根据给定列中的值拆分表可以通过以下步骤实现:
拆分表的优势包括:
拆分表的应用场景包括:
腾讯云相关产品和产品介绍链接地址:
前两篇文章重点讲到了Mysql数据库的主从同步和读写分离,使用主从同步实现从数据库从主数据同步数据保持主从数据一致性,读写分离使用主数据库负责写操作,多个从数据库负责读操作,由于从库可以进行拓展,所以处理更多的读请求也没问题。但是如果业务比较多,写请求越来越多要如何处理呢?可能有人说我可以再加一个master分担写操作,但是两个master数据肯定是需要同步的,主主同步 + 主从同步很显然会让我们的系统架构变得更为的复杂。所以本篇文章主要讨论一个对写操作进行切分的技术:分库分表。
一般情况下我们创建的表对应一组存储文件,使用MyISAM存储引擎时是一个.MYI和.MYD文件,使用Innodb存储引擎时是一个.ibd和.frm(表结构)文件。
一说海量数据有人就说了直接用大数据,那只能说不太了解这块,为此我们才要好好的去讲解一下海量的处理
已经基于行级锁的话,就没有办法从软件层面提升并发度了,否则会事务冲突。所以思路:行级锁、物理层面提升。
最近对一个业务进行了架构改造,主要是对已有的存储过程进行改写,使用SQL的方式来实现,同时对已有的业务处理做事务降维,在性能上的提升效果非常明显,本来通过存储过程是和数据库交互1次,通过SQL的方式是交互2-3次,但是从测试的效果来看,没有看到多次交互带来的流量压力,从应用层的性能来看,比原来的方式好了不少。所以通过改造为我们的后续改造树立了信心,大家也不会一味在存储过程的交互次数纠结了。
接上篇,上篇主要是从字段类型,索引,SQL语句,参数配置,缓存等介绍了关于MySQL的优化,下面从表的设计,分库,分片,中间件,NoSQL等提供更多关于MySQL的优化。
当我们业务数据库表中的数据越来越多,如果你也和我遇到了以下类似场景,那让我们一起来解决这个问题
如果是创业公司。比如注册用户20w, 每天日活1w, 每天单表1000, 高峰期每秒并发 10 ,这个时候,一般不需要考虑分库分表,如果注册用户2000w, 日活100w, 单表10w条,高峰期每秒并发1000,此时就要考虑分库分表。当然多加几台机器,使用负载均衡可以扛住,但是每天单表数据增加,磁盘资源会被消耗掉,高峰期如果要5000 怎么办,系统肯定撑不住。也就是说,数据增加,请求量增大,并发增大,单个数据库肯定不行。
使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死。严重影响业务。
在我们实际开发中,随着业务的不断增加,数据量也在不断的攀升,这样就离不开一个问题:数据查询效率优化 根据自己的以往实际项目工作经验和学习所知,现在对SQL查询优化做一个简单的梳理总结,总结的不好之处,望多多指点交流学习 主要通过以下几个点来进行总结分析:索引、语句本身、分区存储、分库分表
总结:最主要的优化策略还是索引优化和SQL优化,之后就是再调整下Mysql的配置参数,想读写分离、分库分表在系统架构设计的时候就需要确定,后续变更的成本太高。
mysql支持的分区类型包括Range、List、Hash、Key,其中Range比较常用:
select r.*,s.* from r full join s on r.c=s.c
在数据库技术的发展历程中,随着数据量的不断增长和业务需求的日益复杂,如何高效地存储、查询和处理数据成为了关键挑战。OceanBase作为一款高性能、高可用的分布式关系数据库,通过其独特的分区机制,为这一挑战提供了有力的解决方案。
为什么要分库的原因:1)很多时候接口性能慢都是数据库造成的,2)并发量比较大时,大量的数据库请求,会带来磁盘I/O的性能瓶颈,3)来越多,导致sql查询数据,即使走了索引也比较慢。
1、为什么要分表? 数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。
1.主要应用在门户网站首页广告信息的缓存。因为门户网站访问量较大,将广告缓存到redis中,可以降低数据库访问压力,提高查询性能。
来源:https://www.jianshu.com/p/336f682e4b91
互联网时代,亿级用户各种网络行为产生大量数据,如何解决海量数据存储?如何高性能读写?解决思路有哪些,本文列举了常用的解决方案:
随着用户量的激增和时间的堆砌,存在数据库里面的数据越来越多,此时的数据库就会产生瓶颈,出现资源报警、查询慢等场景。
在MyBatis GeneratorXML Configuration File中添加你需要用到的<plugin>元素:
本篇文章是在我看完《从零开始学架构》之后,以架构演变为主线,梳理了一下演变过程中出现的问题以及解决方案,文章中引用了这本书的一些内容和图片
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
关于excel里将一张工作表拆分成多个工作表的方法有很多,如果是偶然一次性的,而且需要拆分的表格也不多,那么手工筛选复制一下也不复杂。
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:
那么高并发系统都有哪些经验,掌握核心技巧,你可以快速成为一个架构师,主导一些高访问量系统的架构设计
在正式开始之前,菜菜还是要强调一点,你的数据表是否应该分,需要综合考虑很多因素,比如业务的数据量是否到达了必须要切分的数量级,是否可以有其他方案来解决当前问题?我不止一次的见过,有的leader在不考虑综合情况下,盲目的进行表拆分业务,导致的情况就是大家不停的加班,连续几周996,难道leader你不掉头发吗?还有的架构师在一个小小业务初期就进行表拆分,大家为了配合你也是马不停蹄的加班赶进度,上线之后反而发现业务数据量很小,但是代码上却被分表策略牵制了太多。拆表引起的问题在特定的场景下,有时候代价真的很大。
分区:把一个数据表的文件和索引分散存储在不同的物理文件中。 特点:业务层透明,无需任何修改,即使从新分表,也是在mysql层进行更改(业务层代码不动)
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHA
分表是一种数据库分割技术,用于将大表拆分成多个小表,以提高数据库的性能和可管理性。在MySQL中,可以使用多种方法进行分表,例如基于范围、哈希或列表等。下面将详细介绍MySQL如何分表以及分表后如何进行数据查询。
对于大规模的分布式集群,或者对于数据密集型应用来说,为了提高吞吐量和性能以及可用性,一般会结合使用数据复制和数据分区。数据复制将对单库的请求压力分给更多的数据库实例,数据分区将每个实例中的庞大的数据文件以一定规则切分成更小的数据文件,并可以存储到不同的磁盘(或数据节点 Node)上,以提高请求的并发性能,同时,增加了扩展性。
上一篇主要讲到了分区分库分表的概念,其实在不影响性能的情况下,我们完全可以使用单分区单库单表。但是业务量大的情况下,受到性能限制我们不得不选择使用分区分库分表。本篇是上一篇的拓展,本篇主要讲讲十几种我们如何使用分区分库分表。如果还未看过上一篇文章建议先阅读概念篇:Mysql分库分表(1) --- 概念篇
通俗地讲表分区是将一大表,根据条件分割成若干个小表。mysql5.1开始支持数据表分区了。 如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分区。当然也可根据其他的条件分区。
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在 千万级以下,字符串为主的表在 五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量。
当MySQL单表记录数过大时,增删改查性能都会急剧下降,所以我们本文会提供一些优化参考,大家可以参考以下步骤来优化:
核心篇 数据存储 MySQL 索引使用的注意事项 1.索引不会包含有NULL的列 只要列中包含有NULL值,都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此符合索引就是无效的。 2.使用短索引 对串列进行索引,如果可以就应该指定一个前缀长度。例如,如果有一个char(255)的列,如果在前10个或20个字符内,多数值是唯一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。 3.索引列排序 mysql查询只使用一个索
举例:一个用户表有很多的属性,关联了很多数据,如果放到同一个表里面的话查询是方便了,但是效率不行。
res = mysql_query( 'select * from order where date < = $curDate'); 原因: 释放了数据库的CPU 多次调用,传入的SQL相同,才可以利用查询缓存 (11)强制类型转换会全表扫描 select * from user where phone=13800001234 你以为会命中phone索引么?大错特错了,这个语句究竟要怎么改? 末了,再加一条,不要使用select *(潜台词,文章的SQL都不合格 =_=),只返回需要的列,能够大大的节省数据传输量,与数据库的内存使用量哟。 整理自:https://cloud.tencent.com/developer/article/1054203
当 MySQL 单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化。 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候 MySQL 单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED; VARCHAR的
数据库专题(二)——数据库设计 (原创内容,转载请注明来源,谢谢) 一、数据库设计规范——范式 数据库设计,需要遵循设计原则,最主要的设计原则是范式。范式是遵循一定规则的数据库设计原则,一共有8种范式:1NF,2NF,3NF,BCNF,4NF,5NF,DKNF,6NF。其中对数据库设计要求逐步提高,即满足2NF的数据库设计必须满足1NF。 通常数据库设计到3NF或BCNF,部分情况下还需要反范式。 1、1NF 第一范式(1NF)是数据库设计的基本要求,它要求每一个字段都具有原子性,不能再分割。 例如
在 MySQL 集群架构中有两种主流的集群实现,一种是读写分离,而另外一种则是数据分片。所谓的数据分片其实就是今天要聊的分库分表技术。
领取专属 10元无门槛券
手把手带您无忧上云