首页
学习
活动
专区
圈层
工具
发布

在Excel里,如何查找A列的数据是否在D列到G列里

问题阐述 在Excel里,查找A列的数据是否在D列到G列里,如果存在标记位置。 Excel数据查找,相信多数的同学都不陌生,我们经常会使用vlookup等各类查找函数,进行数据的匹配查找。...比如:我们要查询A列中的单号是否在B列中出现,就可以使用Vlookup函数来实现。  但是今天的问题是一列数据是否在一个范围里存在 这个就不太管用了。...直接抛出问题给ChatGPT 我问ChatGPT,在Excel里,查找A列的数据是否在D列到G列里,如果存在标记位置。 来看看ChatGPT怎么回答。  但是我对上述回答不满意。...因为他并没有给出我详细的公式,我想有一个直接用的公式。 于是,我让ChatGPT把公式给我补充完整。 让ChatGPT把公式给我补充完整  这个结果我还是不满意。 于是我再次让他给我补充回答。

1.4K20

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

    Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...图1 如何使用VBA代码实现?...End If Loop Next iDisease Next rCell End Sub 代码中使用Split函数以回车符来拆分单元格中的数据并存放到数组中...,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。...Bug:通常是交替添加红色和绿色,但是当句子中存在多个匹配或者局部匹配时,颜色会打乱。

    11.5K30

    在不确定列号的情况下如何使用Vlookup查找

    最近小伙伴在收集放假前的排班数据 但是收上来的数据乱七八糟的 长下面这样 但是老板们只想看排班率 所以我们最终做的表应该是这样 需要计算出排班率 排班率=排班人数/总人数 合计之外的每一个单元格...都需要引用 除了最基础的等于=引用 我们还有一种更加万能的Vlookup+Match的方法 这样无论日期怎么变化 无论日期顺序是否能对上 我们都不用更改公式 例如A部门,2月1日的排班率应该这么写 =...B17 单元格为排班率日期 A2:K2 单元格为我们排班人数的日期 M2:N8单元格是总人数 其中 分子排班人数的公式是 VLOOKUP($A18,$A$1:$K$8,MATCH(B$17...,$A$2:$K$2,0),0) 排班人数里面的日期匹配 我们用Match函数动态确定列号 MATCH(B$17,$A$2:$K$2,0) 分母总人数比较简单 就是常规的Vlookup VLOOKUP...$A$1:$A$8,0),2),0,0,1,11))/(VLOOKUP($A18,$M$2:$N$8,2,0)*10) 思路就是用Index,Match确定部门第一个单元格 然后Offset扩展到部门的所有列

    3.6K10

    问与答62: 如何按指定个数在Excel中获得一列数据的所有可能组合?

    excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...如何实现? ? 图1 (注:这是无意在ozgrid.com中看到的一个问题,我觉得程序编写得很巧妙,使用了递归的方法来解决,非常简洁,特将该解答稍作整理后辑录于此与大家分享!)...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...Then lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2

    8.2K30

    如何把一个python列表(有很多个元素)变成一个excel表格的第一列?

    一、前言 前几天在Python最强王者群有个叫【麦当】的粉丝问了一个关于Python如何把一个python列表(有很多个元素)变成一个excel表格的第一列的问题,这里拿出来给大家分享下,一起学习。...new2=[1,1,1,1,1,2,2,2,2,2] new3=[3,3,3,3,3,4,4,4,4,4] # 下面这行会直接把第一列数据替换 df[0]=new1 # 在最后面添加一列 df["新..."]=new2 # 在最前面插入一列,方法一 col_names=df.columns.tolist() col_names.insert(0, '新列1') df3=df.reindex(columns...=col_names,fill_value=0) print(df3) # 在最前面插入一列,方法二 df3.insert(0,'新列2',new3) print(df3) 【瑜亮】老师在手机上编程的...这篇文章基于粉丝提问,针对如何把一个python列表(有很多个元素)变成一个excel表格的第一列的问题,给出了具体说明和演示,文中给了两个方法,顺利地帮助粉丝解决了问题。

    3.1K10

    在Python里面如何达到R的gplots包的balloonplot函数对table后的列联表的可视化效果

    在 R 编程语言中,使用 table() 函数可以创建列联表(contingency table),也称为频数表或交叉表。列联表用于显示两个或多个分类变量之间的关系,它显示了每个组合的计数(频数)。...在列联表中,行代表一个变量的水平(类别),列代表另一个变量的水平(类别),交叉点的值表示两个变量对应水平的组合出现的次数。...我们做单细胞转录组数据分析的时候尤其是喜欢使用这个函数,比如我们的多个样品整合后细分到亚群,然后在R的gplots包的balloonplot函数对table后的列联表的可视化效果如下所示: R的gplots...目前学员们感兴趣的如何在Python编程语言里面实现这个过程,首先是需要把R里面的数据导出来: load('phe.Rdata') colnames(phe) write.csv(phe[,c(1,16...)],file = 'phe.csv') gplots::balloonplot(table(phe$celltype,phe$orig.ident)) 然后在Python里面,使用代码读取上面的

    56610

    快速介绍Python数据分析库pandas的基础知识和代码示例

    “软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重·要的知识点。” ? 为了能够快速查找和使用功能,使我们在进行机器学习模型时能够达到一定流程化。...在本例中,将新行初始化为python字典,并使用append()方法将该行追加到DataFrame。...选择 在训练机器学习模型时,我们需要将列中的值放入X和y变量中。...通常回根据一个或多个列的值对panda DataFrame进行排序,或者根据panda DataFrame的行索引值或行名称进行排序。 例如,我们希望按学生的名字按升序排序。...mean():返回平均值 median():返回每列的中位数 std():返回数值列的标准偏差。 corr():返回数据格式中的列之间的相关性。 count():返回每列中非空值的数量。

    9.7K20

    python数据分析——数据的选择和运算

    在数据分析的领域中,Python以其灵活易用的特性和丰富的库资源,成为了众多数据科学家的首选工具。在Python的数据分析流程中,数据的选择和运算是两个至关重要的步骤。...使用单个值或序列,可以从DataFrame中索引出一个或多个列。...merge()是Python最常用的函数之一,类似于Excel中的vlookup函数,它的作用是可以根据一个或多个键将不同的数据集链接起来。...: 四、数据运算 pandas中具有大量的数据计算函数,比如求计数、求和、求平均值、求最大值、最小值、中位数、众数、方差、标准差等。...在Python中通过调用DataFrame对象的mode()函数实现行/列数据均值计算,语法如下:语法如下: mode(axis=0, numeric_only=False, dropna=True)

    3.3K10

    70个NumPy练习:在Python下一举搞定机器学习矩阵运算

    难度:2 问题:在iris_2d的sepallength(第1列)中查找缺失值的数量和位置。 答案: 34.如何根据两个或多个条件过滤一个numpy数组?...难度:3 问题:过滤具有petallength(第3列)> 1.5和sepallength(第1列)的iris_2d的行。 答案: 35.如何从numpy数组中删除包含缺失值的行?...难度:2 问题:在iris_2d数组中查找SepalLength(第1列)和PetalLength(第3列)之间的关系。 答案: 37.如何查找给定数组是否有空值?...难度:2 问题:查找在iris数据集的第4列花瓣宽度中第一次出现值大于1.0的位置。 答案: 47.如何将所有大于给定值的值替换为给定的cutoff值?...难度:3 问题:查找由二维numpy数组中的分类列分组的数值列的平均值 输入: 输出: 答案: 60.如何将PIL图像转换为numpy数组?

    24.9K42

    Pandas 秘籍:1~5

    在本章中,您将学习如何从数据帧中选择一个数据列,该数据列将作为序列返回。 使用此一维对象可以轻松显示不同的方法和运算符如何工作。 许多序列方法返回另一个序列作为输出。...所得的序列本身也具有sum方法,该方法可以使我们在数据帧中获得总计的缺失值。 在步骤 4 中,数据帧的any方法返回布尔值序列,指示每个列是否存在至少一个True。...逗号左侧的选择始终根据行索引选择行。 逗号右边的选择始终根据列索引选择列。 不必同时选择行和列。 步骤 2 显示了如何选择所有行和列的子集。 冒号表示一个切片对象,该对象仅返回该维度的所有值。...这些布尔值通常存储在序列或 NumPy ndarray中,通常是通过将布尔条件应用于数据帧中的一个或多个列来创建的。...几乎可以在同一时间查找每个索引位置,而不管其长度如何。 更多 布尔选择比索引选择具有更大的灵活性,因为可以对任意数量的列进行条件调整。 在此秘籍中,我们使用单列作为索引。

    42.9K10

    Python数据分析作业二:Pandas库的使用

    (2) dff 对 DataFrame 根据 “姓名” 列进行分组,并计算每个姓名对应的 “交易额” 列的平均值。...然后,使用.round(2)方法将平均值保留两位小数。最后,将结果存储在新的 Series 对象dff中。dff是一个包含每个姓名对应的平均交易额的 Series,其中索引是姓名,值是平均交易额。...然后,使用.sum()方法两次对这个布尔值的 DataFrame 进行求和,第一次对每列求和,第二次对每行的结果再求和。...(或称为"Sheet3")的数据,并将其存储在名为df2的 DataFrame 中。...然后,使用merge方法将df和df2 DataFrame 进行合并,根据共同的列进行匹配。默认情况下,merge方法会根据两个 DataFrame 中的共同列进行内连接。

    1.2K00

    Python数据分析笔记——Numpy、Pandas库

    3、基本的索引和切片 (1)元素索引、根据元素在数组中的位置来进行索引。...2、DataFrame (1)概念: DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...(3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...8、值计数 用于计算一个Series中各值出现的次数。 9、层次化索引 层次化索引是pandas的一个重要功能,它的作用是使你在一个轴上拥有两个或多个索引级别。...相当于Excel中vlookup函数的多条件查找中的多条件。 对于层次化索引对象,选取数据的方式可以通过内层索引,也可以通过外层索引来选取,选取方式和单层索引选取的方式一致。

    7.7K80

    ClickHouse 数据类型、函数大小写敏感性

    DateTime64(n)​​:具有更高精度的日期时间类型,n表示小数点后的位数。...AVG()​​AVG()​​函数用于计算指定列或整个表中数值列的平均值。它返回一个浮点数值,表示符合条件的列的平均值。...示例:sqlCopy codeSELECT AVG(price)FROM orders以上示例代码将返回​​orders​​表中​​price​​列的平均值。...LIKE​​LIKE​​是一个用于模糊匹配的字符串函数,用于在字符串中查找符合指定模式的子串。它返回一个布尔值,表示是否存在匹配的子串。...语法:​​column LIKE pattern​​参数:列名、模式返回值:布尔值 在ClickHouse中,​​LIKE​​函数通过使用通配符来进行模糊匹配。

    1.5K30

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    ,所以该方法返回一个由布尔值组成的Series对象,它的行索引保持不变,数据则变为标记的布尔值  强调注意:  ​ (1)只有数据表中两个条目间所有列的内容都相等时,duplicated()方法才会判断为重复值...b)用具体的值来进行替换,可用前后两个观测值的平均值修正该异常值 ​ c)不处理,直接在具有异常值的数据集上进行统计分析 ​ d)视为缺失值,利用缺失值的处理方法修正该异常值。  ​...2.2 主键合并数据  ​ 主键合并类似于关系型数据库的连接方式,它是指根据个或多个键将不同的 DataFrame对象连接起来,大多数是将两个 DataFrame对象中重叠的列作为合并的键。 ...2.3 根据行索引合并数据  ​ join()方法能够通过索引或指定列来连接多个DataFrame对象  2.3.1 join()方法  on:名称,用于连接列名。...3.2 轴向旋转  ​ 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。

    6.9K00

    numpy小结

    定义 numpy是进行科学运算不可或缺的工具,很多其他科学计算的库也是基于numpy的,比如pandas numPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组...这是因为: NumPy是在一个连续的内存块中存储数据,独立于其他Python内置对象。NumPy的C语言编写的算法库可以操作内存,而不必进行类型检查或其它前期工作。...比起Python的内置序列,NumPy数组使用的内存更少。 NumPy可以在整个数组上执行复杂的计算,而不需要Python的for循环。...,如果是比较则返回布尔值。 切片: :表示所有的,x:表示从x开始到最后,:x表示从头开始到x-1,x:y表示从x到y。这里的x是从1开始的。 二维数组的索引方式。轴0作为行,轴1作为列。...你可以将其看做简单函数(接受一个或多个标量值,并产生一个或多个标量值)的矢量化包装器。

    97200

    最全面的Pandas的教程!没有之一!

    于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ? 如上所示,'A' 列的平均值是 2.0,所以第二行的空值被填上了 2.0。...然后,调用 .groupby() 方法,并继续用 .mean() 求平均值: ? 上面的结果中,Sales 列就变成每个公司的分组平均数了。...数值处理 查找不重复的值 不重复的值,在一个 DataFrame 里往往是独一无二,与众不同的。找到不重复的值,在数据分析中有助于避免样本偏差。...在 Pandas 里,主要用到 3 种方法: 首先是 .unique() 方法。比如在下面这个 DataFrame 里,查找 col2 列中所有不重复的值: ?...这返回的是一个新的 DataFrame,里面用布尔值(True/False)表示原 DataFrame 中对应位置的数据是否是空值。

    28.4K64
    领券