首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Vue组件-爬取页面表格中的数据并保存为csv文件

背景 实际开发过程中需要将前端以表格形式展示的数据保存为csv格式的文件,由于数据涉及到的种类比较多,格式化都是放在前端进行的,所以后端以接口下载的形式返回csv文件会比较麻烦,于是想着直接写个组件爬取页面中表格内的数据...开发框架:Vue+Webpack+Element-UI 实现 分析 首先分析一下涉及到的知识点,其实涉及到的知识点也比较简单: 获取页面节点信息 获取页面数据 了解csv文件的格式要求 保存为...获取节点规律即简单又重要,只有清晰的了解页面的结构才能更加直接快捷的获取数据。 获取页面数据 了解了页面的HTML结构之后我们就可以针对性的书写循环获取页面中的数据了。...了解csv文件的格式要求 这里是要保存为csv格式的文件,所以需要先搞清楚csv文件的格式要求,csv文件是使用逗号区分列,使用‘\r\n’区分行。...保存为csv文件并下载 了解了csv文件的格式要求之后之后我们就可以直接保存了,这里下载的话可以将数据先拼接成字符串,然后再使用Blob,最后动态生成a标签的方式进行。不了解Blob?猛戳这里。

2.5K30

如何将NumPy数组保存到文件中以进行机器学习

因此,通常需要将NumPy数组保存到文件中。 学习过本篇文章后,您将知道: 如何将NumPy数组保存为CSV文件。 如何将NumPy数组保存为NPY文件。...具体介绍: 1.将NumPy数组保存到.CSV文件 CSV文件是以逗号为分隔符号,将各字段列分离出的一种ASCII文件,可以使用savetxt()函数将NumPy数组保存为CSV文件,此函数将文件名和数组作为参数...1.1将NumPy数组保存到CSV文件的示例 下面的示例演示如何将单个NumPy数组保存为CSV格式。...该数组具有10列的单行数据。我们希望将这些数据作为单行数据保存到CSV文件中。...运行示例之后,我们可以检查“ data.csv ” 的内容看到以下内容: 我们可以看到数据已正确地保存为单行,并且数组中的浮点数已以全精度保存。

7.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    文件读取功能(Pandas读书笔记7)

    原谅我无法给你们一个文件进行测试,这个难题需要在工作中遇到再解决,但是其实刚刚的代码我已经给你们提供了一种解决方案~ errors='ignore' 但是实际工作中会出现部分行由于存储问题或者编码问题导致无法正常读取...那我们用之前的代码读取会怎样呢? ? ? 我们发现数据混杂在了一起,那如何将他们按照竖线分好列呢?增加一个参数即可! ?...保存为CSV文件,r"D:\结果1.csv" r的意思是后面接的文本没有转义字符,直接按照文本对应路径存储即可!...代码执行完就会发现对应路径有新的文件咯~ 四、读写Excel文件 pandas中读取文件都是pd.read函数 读取CSV就是pd.read_csv 读取Excel就是pd.read_excel 那读取...需要读取特定表格的内容 df = pd.read_excel(xlsx, '表格2') read_excel后面增加表格名称即可! 那如何将DataFrame数据存储至Excel中呢? ? ?

    3.9K50

    pandas.DataFrame.to_csv函数入门

    其中,to_csv函数是pandas库中非常常用的一个函数,用于将DataFrame对象中的数据保存为CSV(逗号分隔值)文件。...本文将介绍pandas.DataFrame.to_csv函数的基本使用方法,帮助读者快速上手。准备工作在正式开始之前,首先需要安装pandas库。...如果不指定,数据将被返回作为字符串。sep:指定保存的CSV文件中的字段分隔符,默认为逗号(,)。na_rep:指定表示缺失值的字符串,默认为空字符串。columns:选择要被保存的列。...pandas.DataFrame.to_json​​:该函数可以将DataFrame中的数据保存为JSON格式的文件。​​...pandas.DataFrame.to_hdf​​:该函数可以将DataFrame中的数据保存为HDF5文件,适用于大规模数据的存储和处理。

    1.1K30

    Python与Excel协同应用初学者指南

    要读取.csv文件,有一个类似的函数来在数据框架中装载数据:read_csv()。...如何将数据框架写入Excel文件 由于使用.csv或.xlsx文件格式在Pandas中装载和读取文件,类似地,可以将Pandas数据框架保存为使用.xlsx的Excel文件,或保存为.csv文件。...通过这种方式,可以将包含数据的工作表添加到现有工作簿中,该工作簿中可能有许多工作表:可以使用ExcelWriter将多个不同的数据框架保存到一个包含多个工作表的工作簿中。...可以使用Pandas包中的DataFrame()函数将工作表的值放入数据框架(DataFrame),然后使用所有数据框架函数分析和处理数据: 图18 如果要指定标题和索引,可以传递带有标题和索引列表为...下面是一个示例,说明如何使用pyexcel包中的函数get_array()将Excel数据转换为数组格式: 图25 让我们了解一下如何将Excel数据转换为有序的列表字典。

    17.4K20

    matlab导出csv文件多种方法实现

    matlab导出csv文件多种方法实现 觉得有用的话,欢迎一起讨论相互学习~ 作为一名python 粉丝,csv是我最喜欢的文件格式。那么 如何将matlab中的变量保存为csv?...示例 有一个51*2的矩阵,我们将其列表头分别记为Obj1和Obj2,而行表头为1-51。将这个矩阵输出到csv中。...dlmwrite方法 好用,并且能够在不覆盖原有数据的方式,在行后进行添加 dlmwrite('test.csv',data(1,:),'delimiter',','); dlmwrite('test.csv...',2,'coffset',2); 分别表示 将第一行加到test.csv中,并且以逗号为分隔符 将第二行加到test.csv中,并且从行后添加 将第三行加到test.csv中,并且以相对于已有数据偏移的方式...fprintf方法 fprintf函数不仅可以向csv文件中输入数据,可以向各种文件中输入数据,是最万能的方法!也是灵活程度最高的方法。

    7.9K30

    如何在Weka中加载CSV机器学习数据

    阅读这篇文章后,你会知道: 关于ARFF文件格式以及它在Weka中表示数据的默认方式。 如何在Weka Explorer中加载CSV文件并将其保存为ARFF格式。...如何在Weka中描述数据 机器学习算法主要被设计为与数组阵列一起工作。 这被称为表格化或结构化数据,因为数据在由行和列组成的电子表格中看起来就是这样。...[l814ebqsqx.png] Weka ARFF Viewer 4.点击“File”菜单,在ARFF-Viewer中打开您的CSV文件,然后选择“Open”。导航到您当前的工作目录。...CSV File Format 概要 在这篇文章中,您发现了如何将您的CSV数据加载到Weka中进行机器学习。...具体来说,你了解到: 关于ARFF文件格式以及Weka如何使用它来表示机器学习的数据集。 如何使用ARFF-Viewer加载您的CSV数据并将其保存为ARFF格式。

    8.6K100

    Python数据处理从零开始----第二章(pandas)⑦pandas读写csv文件(1)

    这一节我们将学习如何使用Python和Pandas中的逗号分隔(CSV)文件。 我们将概述如何使用Pandas将CSV加载到dataframe以及如何将dataframe写入CSV。...在第一部分中,我们将通过示例介绍如何读取CSV文件,如何从CSV读取特定列,如何读取多个CSV文件以及将它们组合到一个数据帧,以及最后如何转换数据 根据特定的数据类型(例如,使用Pandas read_csv...Pandas从文件导入CSV 在这个Pandas读取CSV教程的第一个例子中,我们将使用read_csv将CSV加载到与脚本位于同一目录中的数据帧。...在我们的例子中,我们将使用整数0,我们将获得更好的数据帧: df = pd.read_csv(url_csv, index_col=0) df.head() ?...image.png index_col参数也可以以字符串作为输入,现在我们将使用不同的数据文件。 在下一个示例中,我们将CSV读入Pandas数据帧并使用idNum列作为索引。

    3.7K20

    Python数据处理从零开始----第二章(pandas)⑨pandas读写csv文件(4)

    如何在pandas中写入csv文件 我们将首先创建一个数据框。我们将使用字典创建数据框架。...此列是pandas数据框中的index。我们可以使用参数index并将其设置为false以除去此列。...如何将多个数据帧读取到一个csv文件中 如果我们有许多数据帧,并且我们想将它们全部导出到同一个csv文件中。 这是为了创建两个新的列,命名为group和row num。...重要的部分是group,它将标识不同的数据帧。在代码示例的最后一行中,我们使用pandas将数据帧写入csv。...列表中的keys参数(['group1'、'group2'、'group3'])代表不同数据框来源。我们还得到列“row num”,其中包含每个原数据框的行数: ? image.png

    4.3K20

    十、文件读写

    1.文件的读取 read.csv() ##通常用于读取csv格式 read.table() ##通常用于读取txt格式 补充知识点 (1)读取工作目录下文件夹中的数据 read.csv...") ##读取文件后发现第一行不是列名,如果不更改,后期数据处理会出现问题。...write.csv(soft,file = "soft.csv") ###右上角环境中刚好出现了一个soft.csv的文件,并且刚好与数据框soft中的内容一样, 6).将soft保存为Rdata...class不能识别文件名称,是只能识别数据的函数。 判断数据类型的时候不带引号,不带后缀。...###只有把整个矩阵转换成数据框。但是y中有字符型向量,有数值型向量,所以本身文件有问题,平时自己处理文件的时候直接输出为数据框、列表都可以。不保存为矩阵。

    1.8K40

    使用Python将数据保存到Excel文件

    工作表 Python读取多个Excel文件 如何打开巨大的csv文件或文本文件 接下来,要知道的另一件重要事情是如何使用Python将数据保存回Excel文件。...图3:由Python保存的Excel文件 我们会发现,列A包含一些看起来像从0开始的列表。如果你不想要这额外增加的列,可以在保存为Excel文件的同时删除该列。...可能通常不使用此选项,因为在保存到文件之前,可以在数据框架中删除列。 保存数据到CSV文件 我们可以使用df.to_csv()将相同的数据框架保存到csv文件中。...只是指出一个细微的区别,但这确实是Excel和CSV文件之间的区别: CSV文件基本上是一个文本文件,它只包含一张工作表,所以我们不能重命名该工作表。 好了!...本文讲解了如何将一个数据框架保存到Excel文件中,如果你想将多个数据框架保存到同一个Excel文件中,请继续关注完美Excel。

    19.2K40

    文件操作

    背景 一般情况下我们需要分析的数据都是存储在文件中,那么利用 R 分析数据的第一步就是将输入读入 R 语言。如果分析的数据是记录在纸质载体上,还需要将数据手动录入,然后保存为一个文件。...= T,sep = ",",row.names = 1,na.strings = "NA",stringsAsFactors = F) 无论使用哪个函数读取文件,R 中读入的数据都存储为数据框这种数据类型...通常将文件保存为一个变量。读入文件之后,需要验证文件是否读入成功,通常使用 head 函数截取文件头部显示出来,判断格式是否正确,在 Rstudio 中也可以使用 View()函数将全部内容显示出来。...View(dta) #查看数据属性信息 str(dta) 四、函数写入文件 数据处理结束之后,需要将存储在变量中的结果保存到文件中,R 提供了大量写入文件的函数,这些函数通常与 read...,一个工作簿中包含多个工作表(sheet),因此需要指定读取工作簿中那个工作表,可以指定工作表的名字,也可以使用顺序号。

    2.7K10

    将CSV的数据发送到kafka(java版)

    ,选用kafka消息作为数据源是常用手段,因此在学习和开发flink过程中,也会将数据集文件中的记录发送到kafka,来模拟不间断数据; 整个流程如下: [在这里插入图片描述] 您可能会觉得这样做多此一举...这样做的原因如下: 首先,这是学习和开发时的做法,数据集是CSV文件,而生产环境的实时数据却是kafka数据源; 其次,Java应用中可以加入一些特殊逻辑,例如数据处理,汇总统计(用来和flink结果对比验证...消费kafka,地址是:https://github.com/ververica/sql-training 如何将CSV的数据发送到kafka 前面的图可以看出,读取CSV再发送消息到kafka的操作是...开发环境:Win10 Zookeeper:3.4.13 Kafka:2.4.0(scala:2.12) 关于数据集 本次实战用到的数据集是CSV文件,里面是一百零四万条淘宝用户行为数据,该数据来源是阿里云天池公开数据集...,接下来的flink实战就用这个作为数据源; 你不孤单,欣宸原创一路相伴 Java系列 Spring系列 Docker系列 kubernetes系列 数据库+中间件系列 DevOps系列 欢迎关注公众号

    3.5K30

    Pandas高级数据处理:数据压缩与解压

    数据压缩的重要性在实际应用中,我们经常需要处理大量的CSV、Excel等文件。当这些文件的数据量达到GB级别时,读取和写入速度会显著下降,甚至可能导致内存溢出。...})# 将DataFrame保存为压缩的CSV文件df.to_csv('data.csv.gz', compression='gzip')这段代码会将DataFrame保存为名为data.csv.gz的压缩文件...假设我们有一个名为data.csv.gz的压缩文件,可以直接使用read_csv()函数加载它:# 从压缩文件中读取数据df = pd.read_csv('data.csv.gz', compression...总结通过本文的学习,相信你已经掌握了如何使用Pandas进行数据压缩与解压的基本操作,并了解了可能遇到的问题及解决方法。合理利用压缩技术不仅可以提高工作效率,还能更好地管理海量数据。...希望这些知识能帮助你在日常工作中更加得心应手地处理各种数据任务。

    11310

    强烈推荐一个Python可视化模块,简单又好用

    import pynimate as nim 输入数据后,Pynimate将使用函数Barplot()来创建条形数据动画。...: import pandas as pd df = pd.read_csv('data'csv').set_index('time') 比如要处理具体的数据,写成代码应该是这样子的。...最后是ip_freq,它是制作动画中比较关键的一步,通过线性插值使动画更加流畅丝滑。 一般来说,并不是所有的原始数据都适合做成动画,现在一个典型的视频是24fps,即每秒有24帧。...举个栗子,下面这个表格中的数据只有三个时间点,按理说只能生成3帧视频,最终动画也只有3/24秒。...保存为动图一般使用: cnv.save("file", 24, "gif") 若要保存为mp4的话,ffmpeg是个不错的选择,它是保存为mp4的标准编写器。

    30610
    领券