在TensorFlow中使用Transformers保存每个时期的最佳模型,可以通过以下步骤实现:
import tensorflow as tf
from transformers import TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments
model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
training_args = TFTrainingArguments(
output_dir='./results',
evaluation_strategy='epoch',
save_strategy='epoch',
save_total_limit=3,
logging_dir='./logs',
logging_steps=10,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=10,
weight_decay=0.01,
learning_rate=2e-5,
)
train_dataset = tf.data.Dataset.from_tensor_slices((train_inputs, train_labels)).shuffle(100).batch(16)
eval_dataset = tf.data.Dataset.from_tensor_slices((eval_inputs, eval_labels)).batch(16)
def compute_metrics(eval_pred):
labels = eval_pred.label_ids
preds = eval_pred.predictions.argmax(axis=-1)
accuracy = tf.keras.metrics.Accuracy()(labels, preds)
return {'accuracy': accuracy}
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model('./best_model')
以上代码示例假设已经准备好了训练数据集和评估数据集,并使用了BERT模型进行序列分类任务。在训练过程中,使用了TFTrainer对象进行模型训练和评估,并通过compute_metrics函数计算评估指标。最后,使用trainer.save_model方法保存每个时期的最佳模型。
腾讯云相关产品和产品介绍链接地址: