本文为 AI 研习社编译的技术博客,原标题 : GAN by Example using Keras on Tensorflow Backend 作者 | Rowel Atienza 翻译 | GuardSkill...在本文中,我们将讨论如何在少于200行代码中使用以Tensorflow 1.0为后端的Keras 2.0构建能够工作的DCGAN。我们将使用MNIST训练DCGAN学习如何生成手写数图片。...下面给出了对应的keras实现: ? 图2. Generator模型从噪声中合成伪造的MNIST图像。 使用上采样而不是分数跨越的转置卷积。...鉴别模型的keras代码 反模型 图三中展示了生成-鉴别模型,生成器部分尝试骗过鉴别器并同时读取鉴别器的反馈。代码4给出了keras的代码实现。...搞清楚正确的训练/模型参数:采用一些已知的参数,如论文或源代码,一次仅仅调整一个参数。在2000步或更多步的训练之前,观察参数值的效应并在500或1000步及时作出调整。
初学者在调用keras时,不需要纠结于选择tf.keras还是直接import keras,现如今两者没有区别。从具体实现上来讲,Keras是TensorFlow的一个依赖(dependency)。...但,从设计上希望用户只透过TensorFlow来使用,即tf.keras。 所以在此主要记录一下tf.keras.models的使用。...导入 import tensorflow as tf import tensorflow.keras as keras import tensorflow.keras.layers as layers...顺序式模型的编程特点: 1....hide1_layer, hide2_layer, output_layer]) 之后的训练中不要忘记改变model变量。
Checkpointing Tutorial for TensorFlow, Keras, and PyTorchThis post will demonstrate how to checkpoint...Let's see how to make this tangible using three of the most popular frameworks on FloydHub.TensorFlow...We're now set up to save checkpoints in our TensorFlow code.Resuming a TensorFlow checkpointGuess what...on (Tensorflow 1.3.0 + Keras 2.0.6 on Python3.6)The --gpu flag is actually optional here - unless you... --env flag specifies the environment that this project should run on (Tensorflow 1.3.0 + Keras 2.0.6
这意味着开发者可以将Keras 3模型与PyTorch生态系统包,全系列TensorFlow部署和生产工具(如TF-Serving,TF.js和TFLite)以及JAX大规模TPU训练基础架构一起使用。...KerasCV和KerasNLP中的大量预训练模型也适用于所有后端。...自动微分:在训练过程中,Keras使用后端引擎(TensorFlow等)提供的自动微分来计算梯度。这一过程对用户而言是透明的。...后端执行:实际计算(如矩阵乘法、激活等)由后端引擎处理,后端引擎执行模型定义的计算图。 序列化和反序列化:这些类包括保存和加载模型的方法,其中涉及模型结构和权重的序列化。...Keras 自动处理各层如何相互连接、数据如何在网络中流动以及如何进行训练和推理操作等错综复杂的细节。
Keras是一个非常受欢迎的构建和训练深度学习模型的高级API。它用于快速原型设计、最前沿的研究以及产品中。...虽然现在的TensorFlow已经支持Keras,在2.0中,我们将Keras更紧密地集成到TensorFlow平台。...TensorFlow包含Keras API的完整实现(在tf.keras模块中),并有一些TensorFlow特有的增强功能。 Keras只是TensorFlow或其他库的包装器吗?...导出的模型可以部署在使用TensorFlow Lite的移动和嵌入式设备上,也可用于TensorFlow.js(注意:您也可以使用相同的Keras API直接在JavaScript中开发模型)。...如果您正在使用需要Estimators的基础架构,您可以使用model_to_estimator()来转换模型,同时确保Keras工作在TensorFlow生态系统中。
TensorFlow 2.0 中更多自动更新代码的信息,请参考此链接:https://www.tensorflow.org/guide/upgrade。 Keras 的计算后端 ?...、distribution、TPU 训练的支持,以及通常来说对底层的 TensorFlow 与顶层概念(如「层」和「模型」)之间更好的集成度。...TensorFlow 2.0 中的模型和层子类化 TensorFlow 2.0 和 tf.keras 为我们提供了三种独立的方法来实现我们自己的自定义模型: 序列化 函数化 子类化 序列化和函数化的示例都已经在...我们可以使用 TensorFlow Lite (TF Lite) 来训练、优化和量化那些专门为资源受限的设备(如智能手机和 Raspberry Pi, Google Coral 等其他嵌入式设备)设计的模型...你不仅能够使用 TensorFlow 2.0 和 tf.keras 来训练自己的模型,还可以: 使用 TensorFlow Lite (TF Lite) 将这些模型部署到移动/嵌入式环境中; 使用 TensorFlow
使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...这里,我们将展示如何基于混淆矩阵(召回、精度和f1)实现度量,并展示如何在tensorflow 2.2中非常简单地使用它们。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...然而,在我们的例子中,我们返回了三个张量:precision、recall和f1,而Keras不知道如何开箱操作。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。
使用tf.keras,您可以设计,拟合,评估和使用深度学习模型,从而仅用几行代码即可做出预测。它使普通的深度学习任务(如分类和回归预测建模)可供希望完成任务的普通开发人员使用。...在本教程中,您将找到使用tf.keras API在TensorFlow中开发深度学习模型的分步指南。...开发递归神经网络模型 如何使用高级模型功能 如何可视化深度学习模型 如何绘制模型学习曲线 如何保存和加载模型 如何获得更好的模型性能 如何减少辍学过度拟合 如何通过批量归一化来加速培训 如何在适当的时间停止训练并尽早停止...支持TensorFlow,Theano和CNTK后端的独立开源项目。 tf.keras。Keras API已集成到TensorFlow 2。...目前,我们建议使用TensorFlow后端的多后端Keras的Keras用户在TensorFlow 2.0中切换到tf.keras。
作为后端的 Keras 模型 方法 2 :使用 tf.keras 中 Keras 子模块 在介绍的过程中我还会展示如何把自定义的 TensorFlow 代码写入你的 Keras 模型中。...下面我们就加载 CIFAR-10 数据集,并对标签进行编码操作,代码如下: 在第 24 行和第 25 行中,我们分别加载并提取训练和测试所需的数据,同时在第 26 和 27 行将数据进行 floating...在模型定义中,我使用 Lambda 层,如代码中的黄色突出显示,它可以用于插入自定义激活函数 CRELU (Concatenated ReLUs), 激活函数 CRELU 是由 Shang 等人在论文“...而在第 15-18 行是我们的命令行参数解析部分。 和之前一样,我们在第 23 行加载模型训练所需的数据。...当然,原始精度并不是本节所重点关注的内容。 相反,更需要我们注意的是,如何在 Keras 模型内部,用 TensorFlow 的激活函数替换标准 Keras 激活函数!
现在,Keras Core 可以作为 tf.keras 的替代品,当使用 TensorFlow 后端时,几乎完全向后兼容 tf.keras 代码。...Keras Core 的第三个特点是与 JAX、PyTorch 和 TensorFlow 中的本地工作流无缝集成。...Keras Core 其他特点还包括:支持所有后端跨框架的数据 pipeline。多框架的机器学习意味着多框架的数据加载和处理,处理起来比较麻烦。...现在 Keras Core 模型可以使用广泛的数据 pipeline 进行训练 —— 不管你是使用 JAX、PyTorch 还是 TensorFlow 后端。 预训练模型。...现在已经有 40 个 Keras 应用模型可在后端中使用,此外,KerasCV 和 KerasNLP 中存在的大量预训练模型(例如 BERT、T5、YOLOv8、Whisper 等)也适用于所有后端。
现有的仅使用内置层的 tf.keras 模型可以在 JAX 和 PyTorch 中运行! Keras 3 可与任何 JAX、TensorFlow 和 PyTorch 工作流无缝协作。...Keras 3 不仅适用于以 Keras 为中心的工作流,比如定义 Keras 模型、优化器、损失和度量,它还旨在与 JAX、TensorFlow 和 PyTorch 低级后端本地工作流无缝集成,在训练...Keras 3 在 JAX 和 PyTorch 中提供了与 tf.keras 在 TensorFlow 中相同程度的低级实现灵活性。 预训练模型。你现在可以在 Keras 3 中使用各种预训练模型。...现在已经有 40 个 Keras 应用模型可在后端中使用,此外,KerasCV 和 KerasNLP 中存在的大量预训练模型(例如 BERT、T5、YOLOv8、Whisper 、SAM 等)也适用于所有后端...Keras 3 模型可以使用各种数据 pipeline 进行训练,无论你使用的是 JAX、PyTorch 还是 TensorFlow 后端: tf.data.Dataset pipelines。
在官网中提供了教程和指南两种文档,教程是通过示例告诉大家如何使用TensorFlow,而指南则是阐述了TensorFlow的概念和组件。 v2.0更改比较大,不支持v1.0中的很多属性和方法。...主要优势: 使用eager模式和keras,模型的构建和训练更加方便,入门门槛变低。 模型更加稳健,可跨平台部署 统一API,去掉重复和无用的API 2....更新说明 主要说明TensorFlow v2.0和v1.x的区别 2.1 v2.0正式版 2.1.1 keras作为高级API 在v2.0中,将keras作为高级API,用于构建和训练模型。...例如可以使用keras中的Squential(序列式),函数式(functional),子类式(subclassimg)来构建模型,相比v1更加方便。...2.1.2 编程方式发生变化 在v1.x中使用符号式编程并配合图的概念,模型构建与训练的范式是:先构建静态图,之后再session中运行。
渐渐地,TensorFlow 成为最受欢迎的后端,并从 Keras v1.1.0 发行版开始成为它的默认后端。...tf.keras 正是在 TensorFlow v1.10.0 中引入的,这是将 Keras 直接集成到 TensorFlow 包中的第一步。...任何在先前代码库中未解决的 Keras 相关活跃问题将在现有的 ticket 线程中处理,并将通过提交到新代码库进行修复; 4. 与原代码库相关的陈旧问题将被关闭。...Keras 也会给予反馈并对用户提出的更改进行验证。如果更改很小,如文档修复中简单的 bug 修复,则只需打开 PR 无需讨论。...)和超网络(Hypernetwork)这两个完整的例子展示了如何在实践中使用 Keras。
下面我们将看到如何使用Tensorflow在R中安装Keras,并在RStudio的经典MNIST数据集上构建我们的第一个神经网络模型。 目录: 1.在后端安装带有张量的Keras。...1.在后端安装带有TensorFlow的Keras。 在RStudio中安装Keras的步骤非常简单。只需按照以下步骤,您将很顺利的在R中创建您的第一个神经网络模型。...现在是将keras加载到R并安装TensorFlow的时候了。 library(keras) 默认情况下,RStudio加载TensorFlow的CPU版本。...现在我们在RStudio中安装了keras和TensorFlow,让我们在R中启动和构建我们的第一个神经网络来解决MNIST数据集 2.使用keras可以在R中构建的不同类型的模型 以下是使用Keras...1.多层感知器 2.卷积神经网络 3.循环神经网络 4.Skip-Gram模型 5.使用预先训练的模型,如VGG16,RESNET等 6.微调预先训练的模型。
如何在 GPU 上运行 Keras? 如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。...= 'gpu' theano.config.floatX = 'float32' 如何在多 GPU 上运行 Keras 模型?...我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。 在大多数情况下,你最需要的是数据并行。...Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。...对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。 这种并行可以通过使用 TensorFlow device scopes 来实现。
Keras 后端,而测试不同框架在不同类型任务中的性能。...机器之心也尝试使用 TensorFlow 作为后端测试了 Keras,我们发现整个模型的搭建非常简洁,连入门者都能轻松读懂整个网络的架构。...Keras 配置文件中有一个参数决定了使用哪一个深度学习框架作为后端,因此我们可以构建一个相同的模型在不同的深度学习框架(如 TensorFlow、CNTK、Theano)上直接运行。...当然这个模型可以根据各个深度学习框架中的不同库而进行微调以实现更好的性能,不过 Keras 仍然提供了很好的机会来比较这些基本库之间的性能。...在其他三个测试中以 MXNet 作为后端也需要进行一些细微的调整,主要是新版本的 Keras 重命名了一些函数。
数据一致性 在异步训练模式下,由于节点间更新模型参数的频率不一致,可能导致数据不一致问题。为此,需要设计合理的同步机制,如参数服务器、环形同步等。 3....示例一:TensorFlow中的数据并行训练 在TensorFlow中,使用MirroredStrategy可以轻松实现单机多GPU的数据并行训练。...,因为在实际环境中需要自行加载和处理数据。...中的模型并行训练(概念性示例) TensorFlow本身对模型并行的支持不如数据并行那么直接,但可以通过tf.distribute.Strategy的自定义实现或使用第三方库(如Mesh TensorFlow...以下是一个概念性的示例,说明如何在理论上进行模型并行: # 注意:这不是一个可直接运行的代码示例,而是用于说明概念 # 假设我们将模型分为两部分,每部分运行在不同的GPU上 # 需要自定义一个策略来管理这种分割
---- Keras 支持多个后端引擎,不会将你锁定到一个生态系统中 你的 Keras 模型可以基于不同的深度学习后端开发。...重要的是,任何仅利用内置层构建的 Keras 模型,都可以在所有这些后端中移植:你可以用一种后端训练模型,再将它载入另一种后端中(例如为了发布的需要)。...支持的后端有: 谷歌的 TensorFlow 后端 微软的 CNTK 后端 Theano 后端 亚马逊也正在为 Keras 开发 MXNet 后端。...如此一来,你的 Keras 模型可以在 CPU 之外的不同硬件平台上训练: NVIDIA GPU Google TPU,通过 TensorFlow 后端和 Google Cloud OpenCL 支持的...Keras 的发展得到深度学习生态系统中的关键公司的支持 Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。
领取专属 10元无门槛券
手把手带您无忧上云