首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在spark scala中编写固定宽度的输出文件

在Spark Scala中编写固定宽度的输出文件可以通过以下步骤实现:

  1. 导入必要的Spark和Scala库:
代码语言:txt
复制
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
  1. 创建SparkSession:
代码语言:txt
复制
val spark = SparkSession.builder()
  .appName("Fixed Width Output")
  .master("local[*]") // 根据实际情况设置Master节点
  .getOrCreate()
  1. 定义数据源,假设数据源为一个DataFrame:
代码语言:txt
复制
val data = Seq(("John", 25, "Male"),
               ("Jane", 30, "Female"),
               ("Bob", 35, "Male")).toDF("Name", "Age", "Gender")
  1. 定义输出文件的宽度和字段位置信息:
代码语言:txt
复制
val width = 10
val columns = Seq("Name", "Age", "Gender")
val positions = Array(0, width, width * 2)

在这个例子中,我们假设每个字段的宽度都是10个字符,字段的位置信息保存在一个数组中,数组的每个元素代表字段的起始位置。

  1. 使用withColumnsubstring函数来按照指定的宽度截取每个字段的值:
代码语言:txt
复制
val output = columns.zip(positions).foldLeft(data) { case (df, (col, pos)) =>
  df.withColumn(col, substring(col(col), pos + 1, width))
}

通过zip函数将字段名称和位置信息对应起来,然后使用foldLeft遍历这些字段,对每个字段应用substring函数截取指定宽度的值,并使用withColumn函数将结果替换原始的字段。

  1. 将结果保存到输出文件中:
代码语言:txt
复制
output.write.text("output.txt")

这将把DataFrame的内容以文本文件的形式保存到指定的文件路径。

综上所述,以上是在Spark Scala中编写固定宽度输出文件的步骤。注意,此示例仅用于演示目的,实际情况中您可能需要根据具体需求进行修改和扩展。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Spark 整体介绍

    Spark 是一个大数据运算框架,使用了DAG调度程序,比基于Hadoop MapReduce 运行速度提高了100倍以上     Spark 是一个通用框架,对于不同的运行场景都提供了对于的解决方案:         基于流式运算的 Spark Streaming框架         基于SQL 语法的 Spark SQL框架         基于图运算的 GraphX 框架         基于人工智能与机器学习的 MLlib 框架     Spark 可运行在 Yarn 框架上,还可以运行在独立的集群,Mesos,kubernetes 等集群上面,访问HDFS,HBase,Hive等上百种数据源     Spark 支持 Scala,Java,Python及R语言的快速编写     Spark 角色分为 HMaster,Worker俩种角色,Spark 启动命令为 Spark-Submit(简称Driver),      Spark 运算框架可以不基于Hadoop 框架进行数据运行,所以在配置conf文件时,不涉及 Hadoop 相关东西,在运算时,         如果数据存储或者需要写入到HDFS时,需要指定数据读取/写入命令         如果只是Local模式运行(调试模式),可以不基于HDFS     提示:[集群在运行过程中,涉及SSH访问,所以集群配置时一定需要免密登陆方可执行]     Spark 集群安装                 1. 配置文件修改             spart-env.xml    配置HMaster IP,端口             slave.sh 配置workers ip地址         2. 启动Spark集群             start-all.sh     Spark 高可用安装         可以采用,也可以不采用,根据自身条件而定         1. 安装Zookeeper 集群及配置Zookper集群,修改HMaster IP端口为Zookeeper 地址,并且启动             spart-env.xml         2. 启动Spark 集群             start-all.sh         3. 配置HMaster StandBy 进程 并且启动             hmaster-start.sh     提交Spark Sample任务         1.spart-submit classpath jarpath      Spark任务执行流程         Spark任务执行流程与Yarn任务执行流程类型         1. 首先客户端编写配置Configuration信息,打包Jar包,发起任务到HMaster         2. HMaster根据用户下发的任务信息,配置Worker个数及Worker对应的内存及CPU等,并且启动Worker;         3. Worker根据HMaster下发参数信息,并且与Client交互,获取对应的jar包等信息,然后启动Executor行数据处理(一个Worker下可以包含多个Executor)         4. 输出保存数据。     Yarn与Spark的对比         Yarn    ResourceManager   DataManager   YarnChild    (Job/Client)/ApplicationMastor                 Spark   HMaster           Worker        Executor    SparkSubmit     SparkShell 执行         SparkShell 可以理解为Spark的交互式编程窗口,在启动SparkShell那一瞬间,Spark任务已经启动,每个Work已经分配内存及CPU,等待执行任务,一般不采用SparkShell执行任务,不推荐。     Scala编写Spark                                     Spark对Scala的支持最好,Spark是用Scala语言开发的,所以Spark中包含了很多Scala特有的语法,这一点是其他语言所不能比拟的,所以编写Spark任务推荐使用Scala。         Spark 任务入口为SparkContext,首选需要创建SparkContent,然后就可以按照Spark任务执行流程进行编写,指定MapTask执行操作,ReduceTask执行操作,数据输入,数据输出等。

    01

    如何在Hue中添加Spark Notebook

    CDH集群中可以使用Hue访问Hive、Impala、HBase、Solr等,在Hue3.8版本后也提供了Notebook组件(支持R、Scala及python语言),但在CDH中Hue默认是没有启用Spark的Notebook,使用Notebook运行Spark代码则依赖Livy服务。在前面Fayson也介绍了《Livy,基于Apache Spark的开源REST服务,加入Cloudera Labs》、《如何编译Livy并在非Kerberos环境的CDH集群中安装》、《如何通过Livy的RESTful API接口向非Kerberos环境的CDH集群提交作业》、《如何在Kerberos环境的CDH集群部署Livy》、《如何通过Livy的RESTful API接口向Kerberos环境的CDH集群提交作业》、《如何打包Livy和Zeppelin的Parcel包》和《如何在CM中使用Parcel包部署Livy及验证》,本篇文章Fayson主要介绍如何在Hue中添加Notebook组件并集成Spark。

    03

    大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序

    Spark 是一种快速、通用、可扩展的大数据分析引擎,2009 年诞生于加州大学伯克利分校 AMPLab,2010 年开源,2013 年 6 月成为 Apache 孵化项目,2014 年 2 月成为 Apache 顶级项目。项目是用 Scala 进行编写。   目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含 SparkSQL、Spark Streaming、GraphX、MLib、SparkR 等子项目,Spark 是基于内存计算的大数据并行计算框架。除了扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理、迭代算法、交互式查询、流处理。通过在一个统一的框架下支持这些不同的计算,Spark 使我们可以简单而低耗地把各种处理流程整合在一起。而这样的组合,在实际的数据分析过程中是很有意义的。不仅如此,Spark 的这种特性还大大减轻了原先需要对各种平台分别管理的负担。   大一统的软件栈,各个组件关系密切并且可以相互调用,这种设计有几个好处:   1、软件栈中所有的程序库和高级组件都可以从下层的改进中获益。   2、运行整个软件栈的代价变小了。不需要运行 5 到 10 套独立的软件系统了,一个机构只需要运行一套软件系统即可。系统的部署、维护、测试、支持等大大缩减。   3、能够构建出无缝整合不同处理模型的应用。   Spark 的内置项目如下:

    02
    领券