首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在python pandas中将这个json多列表写到单独的列中?

在Python的pandas库中,可以使用json_normalize()方法将包含多个列表的JSON数据写入单独的列中。

以下是实现此操作的示例代码:

代码语言:txt
复制
import pandas as pd
from pandas.io.json import json_normalize

# 假设你有以下的JSON数据
json_data = {
    "id": 1,
    "name": "John",
    "items": [
        {"item_id": 1001, "item_name": "Apple"},
        {"item_id": 1002, "item_name": "Banana"},
        {"item_id": 1003, "item_name": "Orange"}
    ]
}

# 使用json_normalize()将JSON数据转换为DataFrame
df = pd.json_normalize(json_data, "items", ["id", "name"])

# 输出DataFrame
print(df)

输出结果如下:

代码语言:txt
复制
   item_id item_name  id  name
0     1001     Apple   1  John
1     1002    Banana   1  John
2     1003    Orange   1  John

在上述示例中,json_normalize()函数的第一个参数是要转换的JSON数据,第二个参数是指定包含多个列表的键,第三个参数是要包含在生成的DataFrame中的其他键。通过指定这些参数,你可以将多个列表的数据写入单独的列中。

推荐腾讯云的相关产品和产品介绍链接:

请注意,该回答仅代表个人观点,腾讯云产品仅作为示例,并不代表对其他云计算品牌商的推荐或偏好。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

手把手教你用Pandas读取所有主流数据存储

作者:李庆辉 来源:大数据DT(ID:hzdashuju) Pandas提供了一组顶层的I/O API,如pandas.read_csv()等方法,这些方法可以将众多格式的数据读取到DataFrame...无法支持更大的数据量:目前Excel支持的行数上限为1 048 576(2的20次方),列数上限为16 384(2的14次方,列标签为XFD),在数据分析、机器学习操作中往往会超过这个体量。...JSON是互联网上非常通用的轻量级数据交换格式,是HTTP请求中数据的标准格式之一。...如返回有多个df的列表,则可以通过索引取第几个。如果页面里只有一个表格,那么这个列表就只有一个DataFrame。此方法是Pandas提供的一个简单实用的实现爬虫功能的方法。...支持读取非常多的数据格式,本文仅介绍了几种常见的数据文件格式,更多格式可以在其官网查询。

2.8K10

干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

用索引可以很方便地辨认、校准、访问DataFrame中的数据。索引可以是一列连续的数字(就像Excel中的行号)或日期;你还可以设定多列索引。...拿最新的XLSX格式来说,Excel可以在单个工作表中存储一百多万行及一万六千多列。 1. 准备 要实践这个技法,你要先装好pandas模块。此外没有要求了。 2....row in xlsx_ws.rows[1:]: data.append([cell.value for cell row]) 第一行是所有列的标签,最好还是单独存储——我们放到labels变量中。...我们使用表达式生成价格的列表。如代码所示,对于列表对象,你可以调用.index(...)方法查找某一元素首次出现的位置。 5. 参考 查阅pandas文档中read_excel的部分。...分隔行中缺失了其它列。为了处理这个问题,我们使用DataFrame的.dropna (...)方法。 pandas有多种方法用于处理NaN(Not a Number)情况。

8.4K20
  • PySpark UD(A)F 的高效使用

    由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。...x 添加到 maps 列中的字典中。

    19.7K31

    单列文本拆分为多列,Python可以自动化

    标签:Python与Excel,pandas 在Excel中,我们经常会遇到要将文本拆分。Excel中的文本拆分为列,可以使用公式、“分列”功能或Power Query来实现。...为了自动化这些手工操作,本文将展示如何在Python数据框架中将文本拆分为列。...一旦我们将Excel表加载到pandas中,整个表将成为pandas数据框架,“出生日期”列将成为pandas系列。因为我们不能循环,所以需要一种方法来访问该系列中的字符串元素。...注意:返回结果是两个单词(字符串)的列表。 那么,如何将其应用于数据框架列?你可能已经明白了,我们使用.str!让我们在“姓名”列中尝试一下,以获得名字和姓氏。...图7 拆分是成功的,但是当我们检查数据类型时,它似乎是一个pandas系列,每行是包含两个单词的列表。

    7.1K10

    python数据分析——数据分析的数据的导入和导出

    这两种格式的文件都可以用Python的Pandas模块的read_excel方法导入。read_excel方法返回的结果是DataFrame, DataFrame的一列对应着Excel的一列。...在Python中,导入CSV格式数据通过调用pandas模块的read_csv方法实现。read_csv方法的参数非常多,这里只对常用的参数进行介绍。...如下这个题目 假如encoding 如果是utf-8 的话就是乱码 usecols控制输出第一列和第三列 列名重命名 1.3、导入JSON格式数据 JSON是一种轻量级的数据交换格式,容易阅读...JSON对象是由多个键值对组成的,类似于Python的字典; JSON数组由多个JSON对象组成,类似于Python列表。...pandas导入JSON数据 用Pandas模块的read_json方法导入JSON数据,其中的参数为JSON文件 pandas导入txt文件 当需要导入存在于txt文件中的数据时,可以使用pandas

    18710

    如何用 Pandas 存取和交换数据?

    王树义 本文为你介绍 Pandas 存取数据的3种主要格式,以及使用中的注意事项。 ? 问题 在数据分析的过程里,你已经体会到 Python 生态系统的强大了吧?...更重要的时候,是把一个工具的分析结果导出,导入到另一个工具包中。 这些数据存取的功能,几乎分布在每一个 Python 数据科学软件包之内。 但是,其中有一个最重要的枢纽,那就是 Pandas 。 ?...如果你跟着我的教程了解过一些 API 的 Python 调用方法,那你对 JSON 格式应该并不陌生。 ? 本例中我们使用的,是一种特殊的 JSON 格式,叫做 JSON Lines。...所以,在 Pandas 的 to_json 函数里,我们还要专门加上两个参数: orient="records" :每一行数据单独作为字典形式输出; lines=True :去掉首尾的外部括号,并且每一行数据之间不加逗号...首先,你会发现列的位置发生了调换。好在对于数据框来说,这不是问题,因为列之间的相对位置本来也没有特殊含义。 其次,你能看到,那些引号都没有出现。 为了进一步验证,我们还是调取第一行列表的第一个元素。

    1.9K20

    pandas使用与思考读书的意义是什么?

    最近工作中,有一个场景,是从缓存中将数据读取出来,再聚合。...当时想到了三种方案: 使用dict的方式累加 使用数据库的临时表进行数据聚合 使用pandas汇总 方式一、以前使用php写过,考虑过不优雅,就放弃了 方式二、由于数据多,每次处理都要先写入数据库,然后再聚合...读者是否注意到,前面定义 Series 对象的时候,用的是列表,即 Series() 方法的参数中,第一个列表就是其数据值,如果需要定义 index,放在后面,依然是一个列表。...Pandas 的优势在这里体现出来,如果自定义了索引,自定的索引会自动寻找原来的索引,如果一样的,就取原来索引对应的值,这个可以简称为“自动对齐”。...In [58]: df_2 Out[58]: name price 1 python 100 2 python 100 3 python 100 也可以单独的赋值

    1.4K40

    《利用Python进行数据分析·第2版》第6章 数据加载、存储与文件格式6.1 读写文本格式的数据6.2 二进制数据格式6.3 Web APIs交互6.4 数据库交互6.5 总结

    日期解析:包括组合功能,比如将分散在多个列中的日期时间信息组合成结果中的单个列。 迭代:支持对大文件进行逐块迭代。...(如列表末尾不允许存在多余的逗号)之外,JSON非常接近于有效的Python代码。...基本类型有对象(字典)、数组(列表)、字符串、数值、布尔值以及null。对象中所有的键都必须是字符串。许多Python库都可以读写JSON数据。我将使用json,因为它是构建于Python标准库中的。...: 9}] pandas.read_json的默认选项假设JSON数组中的每个对象是表格中的一行: In [69]: data = pd.read_json('examples/example.json...]: resp Out[116]: 响应对象的json方法会返回一个包含被解析过的JSON字典,加载到一个Python对象中: In [117]: data = resp.json

    7.4K60

    Python与Excel协同应用初学者指南

    标签:Python与Excel协同 本文将探讨学习如何在Python中读取和导入Excel文件,将数据写入这些电子表格,并找到最好的软件包来做这些事。...数据可能位于Excel文件中,也可能使用.csv、.txt、.JSON等文件扩展名来保存。数据可以是定性的,也可以是定量的。根据计划解决的问题类型,数据类型可能会有所不同。...从Python、Pip、Pandas、Numpy、Matplotlib等开始,所有东西都将安装在它里面。这将为你提供一种简单快捷的方法来开始进行数据科学,因为不需要担心单独安装数据科学所需的软件包。...可以使用Pandas包中的DataFrame()函数将工作表的值放入数据框架(DataFrame),然后使用所有数据框架函数分析和处理数据: 图18 如果要指定标题和索引,可以传递带有标题和索引列表为...xlwt非常适合将数据和格式信息写入具有旧扩展名的文件,如.xls。 乍一看,很难发现它比你之前学习的Excel软件包有多好,但更多的是因为与其他软件包相比,在使用这个软件包时感觉有多舒服。

    17.4K20

    4个解决特定的任务的Pandas高效代码

    在本文中,我将分享4个在一行代码中完成的Pandas操作。这些操作可以有效地解决特定的任务,并以一种好的方式给出结果。 从列表中创建字典 我有一份商品清单,我想看看它们的分布情况。...更具体地说:希望得到唯一值以及它们在列表中出现的次数。 Python字典是以这种格式存储数据的好方法。键将是字典,值是出现的次数。...由于json_normalize函数,我们可以通过一个操作从json格式的对象创建Pandas DataFrame。 假设数据存储在一个名为data的JSON文件中。...需要重新格式化它,为该列表中的每个项目提供单独的行。 这是一个经典的行分割成列的问题。有许多的不同的方法来解决这个任务。其中最简单的一个(可能是最简单的)是Explode函数。...如果我们想要使用3列,我们可以链接combine_first函数。下面的代码行首先检查列a。如果有一个缺失的值,它从列B中获取它。如果列B中对应的行也是NaN,那么它从列C中获取值。

    25710

    python数据分析笔记——数据加载与整理

    4、要将多个列做成一个层次化索引,只需传入由列编号或列名组成的列表即可。...5、文本中缺失值处理,缺失数据要么是没有(空字符串),要么是用某个标记值表示的,默认情况下,pandas会用一组经常出现的标记值进行识别,如NA、NULL等。查找出结果以NAN显示。...导入JSON数据 JSON数据是通过HTTP请求在Web浏览器和其他应用程序之间发送数据的标注形式之一。通过json.loads即可将JSON对象转换成Python对象。...(import json) 对应的json.dumps则将Python对象转换成JSON格式。 导入EXCEL数据 直接使用read_excel(文件名路径)进行获取,与读取CSV格式的文件类似。...(2)对于pandas对象(如Series和DataFrame),可以pandas中的concat函数进行合并。

    6.1K80

    创建DataFrame:10种方式任你选!

    文件 比如本地当前目录下有一份json格式的数据: [008i3skNgy1gqfhixqzllj30jm0x2act.jpg] 通过pandas读取进来: df4 = pd.read_json("information.json...] 使用python字典创建 1、包含列表的字典创建 # 1、包含列表的字典 dic1 = {"name":["小明","小红","小孙"], "age":[20,18,27],...,每一列单独取出来是一个 Series ,所以我们可以直接通过Series数据进行创建。...) df20 [008i3skNgy1gqfm09syo8j30io08qdgb.jpg] 使用构建器from_records pandas中还有另一个支持元组列表或结构数据类型(dtype)的多维数组的构建器...希望本文能够对读者朋友掌握数据帧DataFrame的创建有所帮助。 下一篇文章的预告:如何在DataFrame中查找满足我们需求的数据

    4.7K30

    Python数据分析的数据导入和导出

    index_col(可选,默认为None):用于指定哪些列作为索引列,可以是单列索引或多列索引。 usecols(可选,默认为None):用于指定需要读取的列,可以是列名或列索引的列表。...JSON对象是由多个键值对组成的,类似于Python的字典; JSON数组由多个JSON对象组成,类似于Python列表。...pandas导入JSON数据 read_json() read_json函数是一个读取JSON文件的函数。它的作用是将指定的JSON文件加载到内存中并将其解析成Python对象。...这个函数通常用于读取存储数据的JSON文件,以便在程序中对数据进行操作和处理。 参数说明: file_path:必需,一个字符串,表示要读取的JSON文件的路径。...注意事项: 读取的JSON文件必须存在并且格式正确,否则函数将会抛出异常。 JSON文件可以包含不同类型的数据,如字符串、数字、布尔值、列表、字典等。

    26510

    Pandas速查卡-Python数据科学

    Josh Devlin 2017年2月21日 Pandas可以说是数据科学最重要的Python包。...有时候便利查找也是非常棒的,所以我们整合了这个速查卡来帮助你!...如果你对pandas的学习很感兴趣,你可以参考我们的pandas教程指导博客(http://www.dataquest.io/blog/pandas-python-tutorial/),里面包含两大部分的内容...关键词和导入 在这个速查卡中,我们会用到一下缩写: df 二维的表格型数据结构DataFrame s 一维数组Series 您还需要执行以下导入才能开始: import pandas as pd import...df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换

    9.2K80

    如何用 Python 和 API 收集与分析网络数据?

    import pandas as pd 我们让 Pandas 将刚刚保留下来的列表,转换为数据框,存入 df 。...写到这里,你基本上搞懂了,如何读取某个城市、某个月份的数据,并且整理到 Pandas 数据框中。 但是,我们要做分析,显然不能局限在单一月份与单一城市。...它是一个字典,每一项分别包括城市代码,和对应的城市名称。 根据我们输入的城市代码,函数就可以自动在结果数据框中添加一个列,注明对应的是哪个城市。...接口,获得结果数据; 如何使用 Python 3 和更人性化的 HTTP 工具包 requests 调用 API 获得数据; 如何用 JSON 工具包解析处理获得的字符串数据; 如何用 Pandas...历史走势; 如何在云环境中运行本样例,并且照葫芦画瓢,自行修改。

    3.3K20

    用 Pandas 做 ETL,不要太快

    本文对电影数据做 ETL 为例,分享一下 Pandas 的高效使用。完整的代码请在公众号「Python七号」回复「etl」获取。 1、提取数据 这里从电影数据 API 请求数据。...response_list 这样复杂冗长的 JSON 数据,这里使用 from_dict() 从记录中创建 Pandas 的 DataFrame 对象: df = pd.DataFrame.from_dict...的列名称列表,以便从主数据帧中选择所需的列。...一种比较直观的方法是将 genres 内的分类分解为多个列,如果某个电影属于这个分类,那么就在该列赋值 1,否则就置 0,就像这样: 现在我们用 pandas 来实现这个扩展效果。...首先扁平化这个 JSON 列表: genres_list = df['genres'].tolist() flat_list = [item for sublist in genres_list for

    3.3K10
    领券