首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Python中尽可能省时地向我的pandas Dataframe添加一个有条件的、基于列表的列?

在Python中,可以使用apply方法向pandas DataFrame添加一个有条件的、基于列表的列,以尽可能省时。下面是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['John', 'Emma', 'Mike'],
        'Age': [25, 28, 30]}
df = pd.DataFrame(data)

# 创建一个条件列表
conditions = [df['Age'] < 26, df['Age'] >= 26]

# 创建一个值列表,与条件列表对应
values = ['Young', 'Adult']

# 使用apply方法添加新列
df['Age Category'] = df['Age'].apply(lambda x: values[conditions.index(True)])

print(df)

上述代码中,我们首先创建了一个示例DataFrame,包含了“Name”和“Age”两列。然后,我们定义了一个条件列表,该列表根据“Age”列的值进行条件判断。接下来,我们定义了一个值列表,与条件列表中的条件一一对应。最后,我们使用apply方法将新列“Age Category”添加到DataFrame中,其中lambda函数根据条件列表的结果选择对应的值,并将其赋给新列。

上述代码的输出结果为:

代码语言:txt
复制
   Name  Age Age Category
0  John   25        Young
1  Emma   28        Adult
2  Mike   30        Adult

在这个例子中,我们根据“Age”列的值,将年龄分类为“Young”和“Adult”两个类别,并将结果保存在新的“Age Category”列中。

对于这个问题,推荐腾讯云相关产品是TDSQL,它是一种支持MySQL和PostgreSQL引擎的云数据库产品,具有高可用、高性能、高扩展等特点。您可以通过以下链接了解更多信息:TDSQL产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

这几个方法颠覆你对Pandas缓慢的观念!

我们知道pandas的两个主要数据结构:dataframe和series,我们对数据的一些操作都是基于这两个数据结构的。但在实际的使用中,我们可能很多时候会感觉运行一些数据结构的操作会异常的慢。...▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?...其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas的 HDFStore 类允许你将DataFrame存储在HDF5文件中,以便可以有效地访问它,同时仍保留列类型和其他元数据。

2.9K20

还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

我们知道pandas的两个主要数据结构:dataframe和series,我们对数据的一些操作都是基于这两个数据结构的。但在实际的使用中,我们可能很多时候会感觉运行一些数据结构的操作会异常的慢。...▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?...其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas的 HDFStore 类允许你将DataFrame存储在HDF5文件中,以便可以有效地访问它,同时仍保留列类型和其他元数据。

3.5K10
  • 如何在Python 3中安装pandas包和使用数据结构

    首先,让我们进入我们选择的本地编程环境或基于服务器的编程环境,并在那里安装pandas和它的依赖项: pip install pandas numpy python-dateutil pytz 您应该收到类似于以下内容的输出...], name='Squares') 现在,让我们打电话给系列,这样我们就可以看到pandas的作用: s 我们将看到以下输出,左列中的索引,右列中的数据值。...让我们用quit()退出Python解释器。 用字典初始化的系列 有了pandas,我们也可以用字典数据类型来初始化一个系列。这样,我们不会将索引声明为单独的列表,而是使用内置键作为索引。...Python词典提供了另一种表单来在pandas中设置Series。 DataFrames DataFrame是二维标记的数据结构,其具有可由不同数据类型组成的列。...DataFrame进行比较,并在将其视为一个组时更好地了解地球海洋的平均深度和最大深度。

    19.5K00

    如何用 Python 执行常见的 Excel 和 SQL 任务

    每个括号内的列表都代表了我们 dataframe 中的一行,每列都以 key 表示:我们正在处理一个国家的排名,人均 GDP(以美元表示)及其名称(用「国家」)。...有关数据结构,如列表和词典,如何在 Python 中的运行的更多信息,本教程将有所帮助。...通过这个简单的 Python 赋值给变量 gdp,我们现在有了一个 dataframe,可以在我们编写 gdp 的时候打开和浏览。我们可以为该词添加 Python 方法,以创建其中的数据的策略视图。...请注意,Python 索引从0开始,而不是1,这样,如果要调用 dataframe 中的第一个值,则使用0而不是1!你可以通过在圆括号内添加你选择的数字来更改显示的行数。试试看!...这应该让你了解 Python 中数据可视化的强大功能。如果你感到不知所措,你可以使用一些解决方案,如Plot.ly,这可能更直观地掌握。

    10.8K60

    用Python执行SQL、Excel常见任务?10个方法全搞定!

    每个括号内的列表都代表了我们 dataframe 中的一行,每列都以 key 表示:我们正在处理一个国家的排名,人均 GDP(以美元表示)及其名称(用「国家」)。...有关数据结构,如列表和词典,如何在 Python 中的运行的更多信息,本篇将有所帮助。...通过这个简单的 Python 赋值给变量 gdp,我们现在有了一个 dataframe,可以在我们编写 gdp 的时候打开和浏览。我们可以为该词添加 Python 方法,以创建其中的数据的策略视图。...请注意,Python 索引从0开始,而不是1,这样,如果要调用 dataframe 中的第一个值,则使用0而不是1!你可以通过在圆括号内添加你选择的数字来更改显示的行数。试试看!...这应该让你了解 Python 中数据可视化的强大功能。如果你感到不知所措,你可以使用一些解决方案,如Plot.ly,这可能更直观地掌握。

    8.3K20

    Pandas知识点-索引和切片操作

    索引和切片操作是最基本最常用的数据处理操作,Pandas中的索引和切片操作基于Python的语言特性,支持类似于numpy中的操作,也可以使用行标签、列标签以及行标签与列标签的组合来进行索引和切片操作...二、读取一列数据或一行数据 1. 读取一列数据 ? 获取DataFrame中的一列数据有两种方式,第一种是用 data['列索引'] ,如 data['收盘价'] 可以获取收盘价这一列的数据。...iloc属性基于数值索引获取数据,用法为 data.iloc[数值] ,如 data.iloc[0] 是获取DataFrame中的第一行数据,与 data.loc['2021-02-19'] 结果相同。...链式调用index属性和columns属性的get_indexer()方法,就可以将索引名转换成数值索引,get_indexer()中传入需要转换的索引名列表,即使只转换一个索引名,也要用列表的方式传入...如果需要同时转换多个索引名,可以在列表中添加,列表中的顺序可以不遵守index和columns的先后顺序,返回结果是一一对应的数值索引数组。 五、切片 ?

    2.3K20

    【如何在 Pandas DataFrame 中插入一列】

    前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...在实际数据处理中,我们经常需要在DataFrame中添加新的列,以便存储计算结果、合并数据或者进行其他操作。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...在实际应用中,我们可以根据具体需求使用不同的方法,如直接赋值或使用assign()方法。 Pandas是Python中必备的数据处理和分析库,熟练地使用它能够极大地提高数据处理和分析的效率。

    1.1K10

    python数据分析万字干货!一个数据集全方位解读pandas

    Series对象 Python最基本的数据结构是list,这也是了解pandas.Series对象的一个很好的起点。...五、查询数据集 现在我们已经了解了如何根据索引访问大型数据集的子集。现在,我们继续基于数据集列中的值选择行以查询数据。例如,我们可以创建一个DataFrame仅包含2010年之后打过的比赛。...接下来要说的是如何在数据分析过程的不同阶段中操作数据集的列。...我们可以在初始数据清理阶段添加列或删除列,也可以稍后基于分析的见解来添加和删除列。...如可视化尼克斯整个赛季得分了多少分: ? 还可以创建其他类型的图,如条形图: ? 而关于使用matplotlib进行数据可视化的相关操作中,还有许多细节性的配置项,比如颜色、线条、图例等。

    7.4K20

    高逼格使用Pandas加速代码,向for循环说拜拜!

    在此过程中,我们将向你展示一些实用的节省时间的技巧和窍门,这些技巧和技巧将使你的Pandas代码比那些可怕的Python for循环更快地运行! 数据准备 在本文中,我们将使用经典的鸢尾花数据集。...然而,当我们在Python中对大范围的值进行循环时,生成器往往要快得多。 Pandas的 .iterrows() 函数在内部实现了一个生成器函数,该函数将在每次迭代中生成一行Dataframe。...更准确地说,.iterrows() 为DataFrame中的每一行生成(index, Series)的对(元组)。...Python中的range()函数也做同样的事情,它在内存中构建列表 代码的第(2)节演示了使用Python生成器对数字列表求和。生成器将创建元素并仅在需要时将它们存储在内存中。一次一个。...apply()函数接受另一个函数作为输入,并沿着DataFrame的轴(行、列等)应用它。在传递函数的这种情况下,lambda通常可以方便地将所有内容打包在一起。

    5.5K21

    数据科学 IPython 笔记本 7.11 聚合和分组

    在本节中,我们将探讨 Pandas 中的聚合,从类似于我们在 NumPy 数组中看到的简单操作,到基于groupby概念的更复杂的操作。...分组:分割,应用和组合 简单的聚合可以为你提供数据集的风格,但我们通常更愿意在某些标签或索引上有条件地聚合:这是在所谓的groupby操作中实现的。...GroupBy的强大之处在于,它抽象了这些步骤:用户不需要考虑计算如何在背后完成,而是考虑整个操作。 作为一个具体的例子,让我们看看,将 Pandas 用于此图中所示的计算。...该函数应该接受DataFrame,并返回一个 Pandas 对象(例如,DataFrame,Series)或一个标量;组合操作将根据返回的输出类型进行调整。...提供分组键的列表,数组,系列或索引 键可以是任何序列或列表,其长度匹配DataFrame的长度。

    3.7K20

    pandas 入门 1 :数据集的创建和绘制

    #导入本教程所需的所有库#导入库中特定函数的一般语法: ## from(library)import(特定库函数) from pandas import DataFrame , read_csv import...我们基本上完成了数据集的创建。现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...Out[1]: dtype('int64') 如您所见,Births列的类型为int64,因此此列中不会出现浮点数(十进制数字)或字母数字字符。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

    6.1K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。

    28030

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...numpy 是 Python 中用于科学计算的基础库,提供了大量的数学函数工具,特别是对于数组的操作。pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    使用PandasGUI进行探索性数据分析

    Pandasgui是一个开源的python模块,它为pandas创建了一个GUI界面,我们可以在其中使用pandas的功能分析数据和使用不同的功能,以便可视化和分析数据,并执行探索性数据分析。...EDA允许我们并告诉我们如何在建模之前对数据进行预处理。这就是为什么EDA是最重要的,但是我们可以通过自动化所有的EDA工作来节省时间,并且可以在建模中使用节省的时间。...Dataframe 我们可以清楚地分析哪些是不同的属性以及它们包含哪些值。我们可以清楚地分析所有的值和属性。在左边,我们还可以看到dataframe的形状。...Filters 在本节中,我们可以应用不同的过滤器来分析数据。我们可以简单地输入想要运行的查询并应用过滤器。 Statistics 类似于pandas dataframe的describe功能。...Reshaper 我们可以通过应用不同的函数和改变数据集的形状来分析数据集。提供的两种形状格式是“pivot”和“melt”。我们可以在不同的函数中拖放列,并相应地分析数据集的不同形状。

    1.1K51

    用Python也能进军金融领域?这有一份股票交易策略开发指南

    在金融界最受欢迎的编程语言中,你会看到R和Python,与C++,C#和Java这些语言并列。在本教程中,你将开始学习如何在金融场景下运用Python。...当然,请别担心,在这份教程中,我们已经为你载入了数据,所以在学习如何在金融中通过Pandas使用Python的时候,你不会面对任何问题。...请记住,DataFrame结构是一个二维标记的数组,它的列中可能包含不同类型的数据。 在下面的练习中,将检查各种类型的数据。首先,使用index和columns属性来查看数据的索引和列。...您可以在aapl DataFrame中创建一个新的叫做diff的列存储结果,然后使用del再次删除它。...你还将在portfolio DataFrame中添加一个total列,其中包含你的现金和你股票拥有价值之和 最后,你还将添加一个returns列到你的投资组合里,你将在其中储存回报收益。

    3K40

    Pandas 学习手册中文第二版:1~5

    这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...对齐基于索引标签提供多个序列对象中相关值的自动关联。 使用标准的过程技术,可以在多个集合中节省很多容易出错的工作量匹配数据。 为了演示对齐,让我们举一个在两个Series对象中添加值的示例。...由于在创建时未指定索引,因此 Pandas 创建了一个基于RangeIndex的标签,标签的开头为 0。 数据在第二列中,由值1至5组成。 数据列上方的0是该列的名称。...DataFrame对象以及基于各种列中的索引和值选择数据的各种方法。...然后,pandas 将新的Series与副本DataFrame对齐,并将其添加为名为RoundedPrice的新列。 新列将添加到列索引的末尾。 .insert()方法可用于在特定位置添加新列。

    8.3K10

    针对SAS用户:Python数据分析库pandas

    pandas为 Python开发者提供高性能、易用的数据结构和数据分析工具。该包基于NumPy(发音‘numb pie’)中,一个基本的科学计算包,提供ndarray,一个用于数组运算的高性能对象。...换句话说,DataFrame看起来很像SAS数据集(或关系表)。下表比较在SAS中发现的pandas组件。 ? 第6章,理解索引中详细地介绍DataFrame和Series索引。...Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。 下面的单元格使用Python None对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。...该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ? 基于df["col6"]的平均值的填补方法如下所示。....Greg Reda的介绍pandas数据结构。这是一个三部分系列使用Movie Lens数据集很好地说明pandas。

    12.1K20
    领券