首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pysparK中计算多列的中位数?

在pyspark中计算多列的中位数,可以通过使用approxQuantile()函数来实现。

approxQuantile()函数用于估计给定列中的分位数。以下是使用approxQuantile()函数计算多列中位数的步骤:

  1. 导入必要的库并创建SparkSession对象:
代码语言:txt
复制
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
  1. 读取数据集并创建DataFrame对象:
代码语言:txt
复制
df = spark.read.csv("path_to_file.csv", header=True, inferSchema=True)
  1. 定义要计算中位数的列列表:
代码语言:txt
复制
columns = ["column1", "column2", "column3"]
  1. 使用approxQuantile()函数计算中位数:
代码语言:txt
复制
percentiles = df.approxQuantile(columns, [0.5], 0.01)

approxQuantile()函数中,第一个参数是要计算的列列表,第二个参数是要计算的分位数列表,第三个参数是相对误差。

  1. 打印中位数结果:
代码语言:txt
复制
for i in range(len(columns)):
    print("Median of", columns[i], ":", percentiles[i])

这样就可以打印出每个列的中位数。

值得注意的是,approxQuantile()函数计算的是近似中位数,可以通过调整第三个参数来控制计算的准确性和性能之间的平衡。

关于pyspark的更多使用方法和示例,你可以参考腾讯云的TencentCloud Spark文档

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pyspark处理数据带有分隔符数据集

本篇文章目标是处理在数据集中存在分隔符或分隔符特殊场景。对于Pyspark开发人员来说,处理这种类型数据集有时是一件令人头疼事情,但无论如何都必须处理它。...使用sparkRead .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件读取数据并将数据放入内存后我们发现,最后一数据在哪里,年龄必须有一个整数数据类型,但是我们看到了一些其他东西。这不是我们所期望。一团糟,完全不匹配,不是吗?...我们已经成功地将“|”分隔(“name”)数据分成两。现在,数据更加干净,可以轻松地使用。...接下来,连接“fname”和“lname”: from pyspark.sql.functions import concat, col, lit df1=df_new.withColumn(‘fullname

4K30
  • 何在keras添加自己优化器(adam等)

    2、找到keras在tensorflow下根目录 需要特别注意是找到keras在tensorflow下根目录而不是找到keras根目录。...一般来说,完成tensorflow以及keras配置后即可在tensorflow目录下python目录中找到keras目录,以GPU为例keras在tensorflow下根目录为C:\ProgramData...找到optimizers.pyadam等优化器类并在后面添加自己优化器类 以本文来说,我在第718行添加如下代码 @tf_export('keras.optimizers.adamsss') class...# 传入优化器名称: 默认参数将被采用 model.compile(loss=’mean_squared_error’, optimizer=’sgd’) 以上这篇如何在keras添加自己优化器...(adam等)就是小编分享给大家全部内容了,希望能给大家一个参考。

    45K30

    MySQL索引前缀索引和索引

    正确地创建和使用索引是实现高性能查询基础,本文笔者介绍MySQL前缀索引和索引。...不要对索引进行计算 如果我们对索引进行了计算,那么索引会失效,例如 explain select * from account_batch where id + 1 = 19298 复制代码 就会进行全表扫描...,因为MySQL无法解析id + 1 = 19298这个方程式进行等价转换,另外使用索引时还需注意字段类型问题,如果字段类型不一致,同样需要进行索引计算,导致索引失效,例如 explain select...第二行进行了全表扫描 前缀索引 如果索引值过长,可以仅对前面N个字符建立索引,从而提高索引效率,但会降低索引选择性。...); Using where 复制代码 如果是在AND操作,说明有必要建立联合索引,如果是OR操作,会耗费大量CPU和内存资源在缓存、排序与合并上。

    4.4K00

    使用VBA删除工作表重复行

    标签:VBA 自Excel 2010发布以来,已经具备删除工作表重复行功能,如下图1所示,即功能区“数据”选项卡“数据工具——删除重复值”。...图1 使用VBA,可以自动执行这样操作,删除工作表所有数据重复行,或者指定重复行。 下面的Excel VBA代码,用于删除特定工作表所有所有重复行。...如果只想删除指定(例如第1、2、3重复项,那么可以使用下面的代码: Sub DeDupeColSpecific() Cells.RemoveDuplicates Columns:=Array...(1, 2, 3), Header:=xlYes End Sub 可以修改代码中代表列数字,以删除你想要重复行。...注:本文学习整理自thesmallman.com,略有修改,供有兴趣朋友参考。

    11.3K30

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 元素 )

    一、RDD#sortBy 方法 1、RDD#sortBy 语法简介 RDD#sortBy 方法 用于 按照 指定 键 对 RDD 元素进行排序 , 该方法 接受一个 函数 作为 参数 , 该函数从...RDD 每个元素提取 排序键 ; 根据 传入 sortBy 方法 函数参数 和 其它参数 , 将 RDD 元素按 升序 或 降序 进行排序 , 同时还可以指定 新 RDD 对象 分区数...新 RDD 对象 ) 分区数 ; 当前没有接触到分布式 , 将该参数设置为 1 即可 , 排序完毕后是全局有序 ; 返回值说明 : 返回一个新 RDD 对象 , 其中元素是 按照指定...需求分析 统计 文本文件 word.txt 中出现每个单词个数 , 并且为每个单词出现次数进行排序 ; Tom Jerry Tom Jerry Tom Jack Jerry Jack Tom 读取文件内容..., 统计文件单词个数并排序 ; 思路 : 先 读取数据到 RDD , 然后 按照空格分割开 再展平 , 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表每个元素

    45710

    【Python】基于组合删除数据框重复值

    本文介绍一句语句解决组合删除数据框重复值问题。 一、举一个小例子 在Python中有一个包含3数据框,希望根据name1和name2组合(在两行顺序不一样)消除重复项。...import numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框重复值') #把路径改为数据存放路径 df =...如需数据实现本文代码,请到公众号回复:“基于删重”,可免费获取。 得到结果: ?...从上图可以看出用set替换frozense会报不可哈希错误。 三、把代码推广到 解决组合删除数据框重复值问题,只要把代码取两代码变成即可。...numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框重复值') #把路径改为数据存放路径 name = pd.read_csv

    14.7K30

    HBaseMemstore存在意义以及族引起问题和设计

    族引起问题和设计 HBase集群每个region server会负责多个region,每个region又包含多个store,每个store包含Memstore和StoreFile。...HBase表,每个族对应region一个store。默认情况下,只有一个region,当满足一定条件,region会进行分裂。...如果一个HBase表设置过多族,则可能引起以下问题: 一个region存有多个store,当region分裂时导致多个族数据存在于多个region,查询某一族数据会涉及多个region导致查询效率低...(这一点在多个族存储数据不均匀时尤为明显) 多个族则对应有多个store,那么Memstore也会很多,因为Memstore存于内存,会导致内存消耗过大 HBase压缩和缓存flush是基于...region,当一个族出现压缩或缓存刷新时会引起其他族做同样操作,族过多时会涉及大量IO开销 所以,我们在设计HBase表族时,遵循以下几个主要原则,以减少文件IO、寻址时间: 族数量

    1.5K10

    【C#】让DataGridView输入实时更新数据源计算

    理解前提:熟知DataTable、DataView 求:更好方案 考虑这样一个场景: 某DataTable(下称dt)B计算(设置了Expression属性),是根据A数据计算而来,该dt被绑定到某个...DataGridView(下称dgv),A、B两都要在dgv显示,其中A可编辑(ReadOnly=false)。...非得是焦点离开这一行(去到别的行,或者其它控件),计算才会更新。——这段话信息量略大,不熟悉dgv提交机制猿友可能得借助下面进一步说明才能明白~老鸟请绕道。...当dgv绑定数据源后,它每一行就对应了数据源一行(或叫一项),这就是我所谓【源行】。...二、解决键入后自动全选问题 我是从控件消息这块打的主意,dgv单元格实际上承载了某种编辑控件(TextBox,CheckBox),所以甭管它是什么原因全选,最后总该是收到了什么消息它才全选,那么我就用

    5.2K20

    Power BI: 使用计算创建关系循环依赖问题

    文章背景: 在表缺少主键无法直接创建关系,或者需要借助复杂计算才能创建主键情况下,可以利用计算来设置关系。在基于计算创建关系时,循环依赖经常发生。...产品价格有很多不同数值,一种常用做法是将价格划分成不同区间。例如下图所示配置表。 现在对价格区间键值进行反规范化,然后根据这个新计算建立一个物理关系。...下面对因为与计算建立关系而出现循环依赖进行分析,包括为什么DISTINCT可以消除循环依赖。...2 原因分析 让我们回顾一下计算公式简写版本(Sale表PriceRangeKey): PriceRangeKey = CALCULATE ( VALUES( PriceRanges...假设有一个产品表具有一个唯一密钥值产品密钥)和描述产品特征(包括产品名称、类别、颜色和尺寸)其他。当销售表仅存储密钥(产品密钥)时,该表被视为是规范化

    75420

    条码打印软件不干胶标签纸设置方法

    在使用条码打印软件打印条码二维码标签时,第一步就是新建标签,设置标签宽度高度,以及行列边距等信息,如果标签信息设置不对,可想而知,打印效果也会不尽人意,单排标签纸之前就说过了,不会小伙伴可以参考条码打印软件如何设置单排标签纸尺寸...,今天小编就说说不干胶标签纸设置方法。...运行条码打印软件,新建标签,选择打印机,和自定义标签纸大小,手动输入不干胶标签纸宽度和高度。标签宽度是不干胶标签纸总宽度(含底衬纸),高度是不干胶标签纸上面小标签纸高度。...设置好之后,直接点“完成” 然后通过条码打印软件左上角齿轮状文档设置工具打开“文档设置”,在“布局”页面,根据不干胶标签纸实际测量结果,设置标签行列为1行3,左右边距各为1mm,上下边距不需要设置...设置后可以在右侧看到标签纸设置效果,效果和不干胶标签纸是一样,然后确定。 到这里条码打印软件标签纸就设置完成了,可以在条码打印软件制作流水号条形码然后打印预览查看一下。

    2K40

    我攻克技术难题:大数据小白从0到1用Pyspark和GraphX解析复杂网络数据

    从零开始在本文中,我们将详细介绍如何在Python / pyspark环境中使用graphx进行图计算。...GraphX是Spark提供计算API,它提供了一套强大工具,用于处理和分析大规模图数据。通过结合Python / pyspark和graphx,您可以轻松地进行图分析和处理。...安装pyspark包pip install pyspark由于官方省略步骤还是相当,我简单写了一下我成功演示示例。...您可以通过从浏览器打开URL,访问Spark Web UI来监控您工作。GraphFrames在前面的步骤,我们已经完成了所有基础设施(环境变量)配置。...首先,让我来详细介绍一下GraphFrame(v, e)参数:参数v:Class,这是一个保存顶点信息DataFrame。DataFrame必须包含名为"id",该存储唯一顶点ID。

    46720

    手机计算摄影3-摄融合

    我想,这些惊人数据一定让你感到好奇——这背后是什么样计算摄影技术在支撑呢?今天我这篇文章,就来谈一谈“摄融合”技术,这是除双摄虚化、光学变焦之外,另外一个我很感兴趣领域。...流派1遵循严谨视角几何方法,认为拍摄同一个目标时,图像和空间物体之间满足对极几何约束关系,我在文章双摄虚化也提到了这一点。...下面是这个模块给出融合权重示意图,可以看到图像不同区域权重是明显不同 最后展示几个场景融合结果和融合前对比: 全图对比: 局部细节: 全图对比: 局部细节: 目前这么一套摄融合算法...而当计算摄影技术加持摄融合能够得到大家认可时,工程师们也是最开心! 这篇写作过程,获得了好些同事帮助,在此表示感谢。再次感谢美女模特素颜出镜!...图像合成与图像融合,我介绍了各种各样图像融合算法

    1.3K20

    独家 | 一文读懂PySpark数据框(附实例)

    人们往往会在一些流行数据分析语言中用到它,Python、Scala、以及R。 那么,为什么每个人都经常用到它呢?让我们通过PySpark数据框教程来看看原因。...列名和个数(行和) 当我们想看一下这个数据框对象各列名、行数或数时,我们用以下方法: 4. 描述指定 如果我们要看一下数据框某指定概要信息,我们会用describe方法。...这个方法会提供我们指定统计概要信息,如果没有指定列名,它会提供这个数据框对象统计信息。 5. 查询 如果我们要从数据框查询多个指定,我们可以用select方法。 6....查询不重复组合 7. 过滤数据 为了过滤数据,根据指定条件,我们使用filter命令。 这里我们条件是Match ID等于1096,同时我们还要计算有多少记录或行被筛选出来。 8....这里,我们将要基于Race对数据框进行分组,然后计算各分组行数(使用count方法),如此我们可以找出某个特定种族记录数。 4.

    6K10

    【Python篇】深入挖掘 Pandas:机器学习数据处理高级技巧

    1.1 缺失值处理 数据缺失值常常会影响模型准确性,必须在预处理阶段处理。Pandas 提供了丰富缺失值处理方法: 删除缺失值:可以删除包含缺失值行或。...填充缺失值:可以使用均值、中位数、最常见值或自定义值填充缺失值。...中位数填充:适合存在极端值数值特征。 众数填充:常用于分类特征。 1.2 数据标准化与归一化 在某些机器学习算法(线性回归、KNN 等),数据尺度差异会对模型表现产生影响。...Bob 60000 48000.0 2 Charlie 70000 56000.0 在这里,apply() 允许我们对 DataFrame 特定进行自定义计算并生成新...这时我们可以结合 Pandas 与大数据处理框架, PySpark 和 Vaex,来实现大规模数据高效处理。

    12810

    何在 Python 中计算列表唯一值?

    在本文中,我们将探讨四种不同方法来计算 Python 列表唯一值。 在本文中,我们将介绍如何使用集合模块集合、字典、列表推导和计数器。...方法 1:使用集合 计算列表唯一值最简单和最直接方法之一是首先将列表转换为集合。Python 集合是唯一元素无序集合,这意味着当列表转换为集合时,会自动删除重复值。...方法 3:使用列表理解 Python 列表理解是操作列表有效方法。它为创建新列表提供了紧凑且可读语法。有趣是,列表推导也可以计算列表唯一值。...方法 4:使用集合模块计数器 Python 集合模块提供了一个高效而强大工具,称为计数器,这是一个专门字典,用于计算集合中元素出现次数。通过使用计数器,计算列表唯一值变得简单。...结论 总之,计算列表唯一值任务是 Python 编程常见要求。在本文中,我们研究了四种不同方法来实现这一目标:利用集合、使用字典、利用列表理解和使用集合模块计数器。

    32020

    空间解析:视角几何在3D打印应用

    视角几何是计算机视觉一个分支,它涉及到从多个视角捕获二维图像恢复出三维结构。...视角几何技术通过分析不同视角下图像,提取出场景三维信息,为3D打印提供了丰富数据来源。II. 视角几何技术原理在视角几何技术,图像采集、特征点匹配和三维重建是实现3D模型创建关键步骤。...III. 3D打印视角几何应用为了提供更详细代码示例,我们将使用Python和OpenCV库来模拟视角几何技术在3D打印应用几个关键步骤。...技术挑战与解决方案在视角几何技术应用于3D打印过程,数据采集、计算复杂性以及精确度是三个主要挑战。以下是针对这些挑战代码分点示例,展示了如何使用Python和OpenCV库来处理这些问题。...,立体匹配或结构光,计算量很大,需要有效算法和足够计算资源。

    14610
    领券