首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中的loc和iloc_pandas获取指定数据的行和列

大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二列的值 # 读取第二列全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某列 # 读取第1行,第B列对应的值 data3...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

10K21

用过Excel,就会获取pandas数据框架中的值、行和列

标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...返回索引列表,在我们的例子中,它只是整数0、1、2、3。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。

19.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    解决ValueError: cannot convert float NaN to integer

    然后,使用​​mean​​函数计算了每个学生的平均成绩,并将结果保存在​​Average​​列中。...这个示例展示了如何在实际应用场景中处理NaN值,并将其转换为整数类型,避免了​​ValueError: cannot convert float NaN to integer​​错误。...处理NaN值是数据清洗与准备的重要环节之一,常见的处理方法包括填充(用合适的值替换NaN)、删除(从数据集中删除包含NaN的行或列)等。整数整数是数学中的一种基本数据类型,用于表示不带小数部分的数字。...在编程中,整数是一种常用的数据类型,通常用于表示不需要小数精度的数值。整数可以是正数、负数或零。 整数的特点包括:整数没有小数部分,总是被存储为整数值。整数之间可以进行常见的数学运算,如加减乘除等。...可以使用整数执行各种数值计算和逻辑操作,并与其他数据类型(如浮点数、字符串)进行交互。 对于某些操作,比如将一个浮点数转换为整数类型,需要注意浮点数的有效性以及特殊情况,如存在NaN值的情况。

    2.2K00

    没错,这篇文章教你妙用Pandas轻松处理大规模数据

    在这篇文章中,我们将介绍 Pandas 的内存使用情况,以及如何通过为数据框(dataframe)中的列(column)选择适当的数据类型,将数据框的内存占用量减少近 90%。...默认情况下,Pandas 会占用和数据框大小差不多的内存来节省时间。因为我们对准确度感兴趣,所以我们将 memory_usage 的参数设置为 ‘deep’,以此来获取更准确的数字。...对于表示数值(如整数和浮点数)的块,Pandas 将这些列组合在一起,并存储为 NumPy ndarry 数组。...我们可以看到,内存的使用量从 7.9Mb 降到了 1.5 Mb,减少了 80% 以上。但这对原始数据框的影响并不大,因为本身整数列就非常少。 现在,让我们来对浮点型数列做同样的事情。...category 类型在底层使用整数类型来表示该列的值,而不是原始值。Pandas 用一个单独的字典来映射整数值和相应的原始值之间的关系。当某一列包含的数值集有限时,这种设计是很有用的。

    3.7K40

    Pandas数据类型转换:astype与to_numeric

    、np.float64)或Pandas特定类型(如'category')。...(一)常见用法单一列转换如果我们有一个包含混合类型数据的DataFrame,并且想要将某一列转换为整数类型,可以这样做: import pandas as pd df = pd.DataFrame...这是因为某些值无法被解释为预期的数字格式。为了避免这种情况,可以在转换前清理数据,或者使用errors='ignore'参数跳过无法转换的值。精度丢失在从浮点数转换为整数时,可能会导致精度丢失。...如果希望保留小数部分,应该选择适当的浮点类型而不是整数类型。三、to_numeric方法to_numeric 主要用于将字符串或其他非数值类型的序列转换为数值类型。...对于无法转换的值(如'abc'),它们会被设置为NaN。四、总结astype 和 to_numeric 都是非常强大的工具,能够帮助我们在Pandas中灵活地进行数据类型转换。

    24610

    解决TypeError: read_excel() got an unexpected keyword argument ‘parse_cols or ‘she

    假设我们有一个名为data.xlsx的Excel文件,其中包含一个名为Sheet1的工作表。工作表包含三列数据:姓名、年龄和性别。我们希望使用pandas读取该文件并选择姓名和年龄两列进行处理。...Series​​是一维带标签的数组,类似于列标签和数据的标签化数组。​​DataFrame​​是一个二维的表格型数据结构,每列可以是不同类型的数据(整数、浮点数、字符串等)。...数据清洗:Pandas提供了丰富的功能来处理数据中的缺失值、重复值和异常值。通过使用Pandas的函数和方法,可以轻松地删除缺失值、去除重复值、填充缺失值等。...数据分析:Pandas提供了丰富的统计和分析方法,如描述性统计、聚合操作、透视表和时间序列分析等。这些方法可以帮助用户更好地了解和分析数据。...数据导入和导出:Pandas支持多种数据格式的导入和导出,如CSV文件、Excel文件、SQL数据库、JSON格式和HTML表格等。这使得数据的获取和存储都变得非常方便。

    1.1K50

    pandas 入门 1 :数据集的创建和绘制

    在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...此时的名称列无关紧要,因为它很可能只是由字母数字字符串(婴儿名称)组成。本专栏中可能存在不良数据,但在此分析时我们不会担心这一点。在出生栏应该只包含代表出生在一个特定年份具有特定名称的婴儿数目的整数。...我们可以检查所有数据是否都是数据类型整数。将此列的数据类型设置为float是没有意义的。在此分析中,我不担心任何可能的异常值。...Out[1]: dtype('int64') 如您所见,Births列的类型为int64,因此此列中不会出现浮点数(十进制数字)或字母数字字符。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

    6.1K10

    数据科学 IPython 笔记本 7.7 处理缺失数据

    在标记方法中,标记值可能是某些特定于数据的惯例,例如例如使用-9999或某些少见的位组合来表示缺失整数值,或者它可能是更全局的惯例,例如使用NaN(非数字)表示缺失浮点值,这是一个特殊值,它是 IEEE...浮点规范的一部分。...Pandas 中的缺失数据 Pandas 处理缺失值的方式受到其对 NumPy 包的依赖性的限制,NumPy 包没有非浮点数据类型的 NA 值的内置概念。...例如,如果我们将整数数组中的值设置为np.nan,它将自动向上转换为浮点类型来兼容 NA: x = pd.Series(range(2), dtype=int) x ''' 0 0 1 1...dtype: int64 ''' x[0] = None x ''' 0 NaN 1 1.0 dtype: float64 ''' 请注意,除了将整数数组转换为浮点数外,Pandas

    4.1K20

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    由此我们可以进一步了解我们应该如何减少内存占用,下面我们来看一看pandas如何在内存中存储数据。...每种数据类型在pandas.core.internals模块中都有一个特定的类。pandas使用ObjectBlock类来表示包含字符串列的数据块,用FloatBlock类来表示包含浮点型列的数据块。...对于包含数值型数据(比如整型和浮点型)的数据块,pandas会合并这些列,并把它们存储为一个Numpy数组(ndarray)。Numpy数组是在C数组的基础上创建的,其值在内存中是连续存储的。...这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...可以看到,每一个值都被赋值为一个整数,而且这一列在底层是int8类型。这一列没有任何缺失数据,但是如果有,category子类型会将缺失数据设为-1。

    8.7K50

    Python数据分析常用模块的介绍与使用

    random生成数组 使用NumPy的random模块可以生成各种类型的随机数组,如整数数组、浮点数数组、多维数组等。...Series Series是Pandas中的一种数据结构,类似于一维的数组或列表。它由两个部分组成:索引和数据值。索引是Series中数据的标签,它可以是整数、字符串或其他数据类型。...缺失值处理:可以使用Pandas提供的函数来处理Series中的缺失值,如isnull、fillna和dropna。...DataFrame由多个Series组成,DataFrame可以类比为二维数组或者矩阵,但与之不同的是,DataFrame必须同时具有行索引和列索引,每列可以是不同的数据类型(整数、浮点数、字符串等)。...社区支持和文档丰富:Scikit-Learn拥有庞大的用户社区和详细的文档,用户可以在社区中获取帮助,查找使用示例和教程。

    31910

    对比Excel,一文掌握Pandas表格条件格式(可视化)

    突出显示单元格 在Excel条件格式中,突出显示单元格规则提供的是大于、小于、等于以及重复值等内置样式,不过在Pandas中这些需要通过函数方法来实现,我们放在后续介绍。...CSS属性,案例中我们将待高亮的部分显示为字体颜色-白色,背景色-紫色 金牌数区间[20, 30]、银牌数区间[10, 20]、铜牌数区间[5, 10] 2.5....背景渐变色 在Excel中,直接通过条件格式->色阶 操作即可选择想要的背景渐变色效果 而在Pandas中,我们可以通过df.style.background_gradient()进行背景渐变色的设置...formatter 显示格式 subset用于指定操作的列或行 na_rep用于指定缺失值的格式 precision用于指定浮点位数 decimal用于用作浮点数、复数和整数的十进制分隔符的字符,默认是.... thousands用作浮点数、复数和整数的千位分隔符的字符 escape用于特殊格式输出(如html、latex等,这里不做展开,可参考官网) 比如,我们给数据加上单位枚,缺失值显示为无 设置小数点位数为

    5.1K20

    Pandas高级数据处理:内存优化

    例如,整数列默认为 int64,浮点数列默认为 float64,而这些类型占用较多内存。...对于某些不需要高精度的数据,可以使用更小的类型如 int32 或 float32,甚至 int8 或 float16 来节省内存。2....DataFrame 的大小过大有时我们会加载整个 CSV 文件到内存中,即使我们只需要其中的一部分数据。这不仅浪费了内存,还增加了不必要的计算时间。可以通过只读取需要的列或分块读取文件来优化内存使用。...优化数据类型:如前所述,使用更小的数据类型。2. 数据类型转换错误在转换数据类型时,可能会遇到一些意外情况。例如,尝试将包含缺失值的列转换为整数类型会失败。...希望本文能帮助你在实际工作中更好地应用 Pandas 进行高效的数据处理。

    10910

    6个pandas新手容易犯的错误

    在实际中如果出现了这些问题可能不会有任何的错误提示,但是在应用中却会给我们带来很大的麻烦。 使用pandas自带的函数读取大文件 第一个错误与实际使用Pandas完成某些任务有关。...pandas中最糟糕也是最耗内存的数据类型是 object,这也恰好限制了 Pandas 的一些功能。剩下的我们还有浮点数和整数。...以下这张表是pandas的所有类型: Pandas命名方式中,数据类型名称之后的数字表示此数据类型中的每个数字将占用多少位内存。因此,我们的想法是将数据集中的每一列都转换为尽可能小的子类型。...我们只要根据规则来判断就可以了,这是规则表: 通常,根据上表将浮点数转换为 float16/32 并将具有正整数和负整数的列转换为 int8/16/32。...甚至在文档的“大型数据集”部分会专门告诉你使用其他软件包(如 Dask)来读取大文件并远离 Pandas。其实如果我有时间从头到尾阅读用户指南,我可能会提出 50 个新手错误,所以还是看看文档吧。

    1.7K20

    利用Pandas库实现Excel条件格式自动化

    突出显示单元格 在Excel条件格式中,突出显示单元格规则提供的是大于、小于、等于以及重复值等内置样式,不过在Pandas中这些需要通过函数方法来实现,我们放在后续介绍。...CSS属性,案例中我们将待高亮的部分显示为字体颜色-白色,背景色-紫色 金牌数区间[20, 30]、银牌数区间[10, 20]、铜牌数区间[5, 10] 2.5....背景渐变色 在Excel中,直接通过条件格式->色阶 操作即可选择想要的背景渐变色效果 而在Pandas中,我们可以通过df.style.background_gradient()进行背景渐变色的设置...formatter 显示格式 subset用于指定操作的列或行 na_rep用于指定缺失值的格式 precision用于指定浮点位数 decimal用于用作浮点数、复数和整数的十进制分隔符的字符,默认是.... thousands用作浮点数、复数和整数的千位分隔符的字符 escape用于特殊格式输出(如html、latex等,这里不做展开,可参考官网) 比如,我们给数据加上单位枚,缺失值显示为无 设置小数点位数为

    6.3K41

    Python 数据分析(PYDA)第三版(二)

    此外,pandas 还提供了一些更具领域特定功能,如时间序列操作,这在 NumPy 中不存在。...数值数据类型的命名方式相同:类型名称,如float或int,后跟表示每个元素的位数的数字。标准的双精度浮点值(Python 中float对象底层使用的)占用 8 字节或 64 位。..._generator.Generator 查看 表 4.3 以获取类似 rng 这样的随机生成器对象上可用的部分方法列表。我将使用上面创建的 rng 对象在本章的其余部分生成随机数据。...numpy.modf 就是一个例子:它是内置 Python math.modf 的矢量化版本,返回浮点数组的小数部分和整数部分: In [159]: arr = rng.standard_normal(...[row, col] 通过行和列标签选择单个标量值 df.iat[row, col] 通过行和列位置(整数)选择单个标量值 reindex方法 通过标签选择行或列 整数索引的陷阱 使用整数索引的 pandas

    29300

    Pandas 秘籍:1~5

    例如,aspect_ratio列中的每个值都是 64 位浮点数,movie_facebook_likes列中的每个值都是 64 位整数。...Pandas 默认使用其核心数字类型,整数,并且浮点数为 64 位,而不管所有数据放入内存所需的大小如何。 即使列完全由整数值 0 组成,数据类型仍将为int64。...您可以使用np.number或字符串number在摘要中包含整数和浮点数。 从技术上讲,数据类型是层次结构的一部分,其中数字位于整数和浮点上方。...可以使用astype方法将整数,浮点数甚至是布尔值强制转换为其他数据类型,并将其作为字符串或特定对象的确切类型传递给它,如步骤 4 所示。...更多 为了更好地了解对象数据类型的列与整数和浮点数之间的区别,可以修改这些列中每个列的单个值,并显示结果的内存使用情况。

    37.6K10

    Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签...2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值的)。...4. pandas的主要Index对象 Index 最泛化的Index对象,将轴标签表示为一个由Python对象组成的NumPy数组 Int64Index 针对整数的特殊Index MultiIndex...处理缺失数据(Missing data) 9.1 pandas使用浮点值NaN(Not a Number)表示浮点和非浮点数组中的缺失数据。...9.2 NA处理办法 dropna 根据各标签值中是否存在缺失数据对轴标签进行过滤,可通过阀值调节对缺失值的容忍度 fillna 用指定的或插值方法(如ffil或bfill

    3.9K50

    将文本字符串转换成数字,看pandas是如何清理数据的

    记住,数据框架中的所有值都是字符串数据类型。 图1 df.astype()方法 这可能是最简单的方法。我们可以获取一列字符串,然后强制数据类型为数字(即整数或浮点数)。...对于第一列,因为我们知道它应该是“整数”,所以我们可以在astype()转换方法中输入int。 图2 然而,如果数据包含小数,int将不起作用。...在这种情况下,我们需要将float传递到方法参数中。 图3 这个方法看起来很容易应用,但这几乎是它所能做的——它不适用于其余的列。...然而,这种方法在某些需要清理数据的情况下非常方便。例如,列l8中的数据是“文本”数字(如“1010”)和其他实文本(如“asdf”)的混合。...图4 图5 包含特殊字符的数据 对于包含特殊字符(如美元符号、百分号、点或逗号)的列,我们需要在将文本转换为数字之前先删除这些字符。

    7.3K10

    Pandas数据处理——渐进式学习1、Pandas入门基础

    ]数组切片 用标签提取一行数据 用标签选择多列数据 用标签切片,包含行与列结束点 提取标量值 快速访问标量:效果同上 用整数位置选择: 用整数切片:  显式提取值(好用) 总结  ---- 前言         ...,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态系统的重要组成部分。 Pandas 已广泛应用于金融领域。...·下标为2的行,第二列·相当于(2,2) print(df.loc[dates[2], 2]) 效果:  快速访问标量:效果同上 这里的不是列坐标值,而是列名 # 获取目标值·下标为2的行,第二列·相当于

    2.2K50
    领券