首页
学习
活动
专区
圈层
工具
发布

使用Python和OpenCV检测图像中的多个亮点

本文来自光头哥哥的博客【Detecting multiple bright spots in an image with Python and OpenCV】,仅做学习分享。...原文链接:https://www.pyimagesearch.com/2016/10/31/detecting-multiple-bright-spots-in-an-image-with-python-and-opencv...今天的博客文章是我几年前做的一个关于寻找图像中最亮点的教程的后续。 我之前的教程假设在图像中只有一个亮点你想要检测... 但如果有多个亮点呢?...如果您想在图像中检测多个亮点,代码会稍微复杂一点,但不会太复杂。不过不用担心:我将详细解释每一个步骤。 看看下面的图片: ? 在这幅图中,我们有五个灯泡。...我们的目标是检测图像中的这五个灯泡,并对它们进行唯一的标记。 首先,打开一个新文件并将其命名为detect_bright_spot .py。

5.7K10

用python和opencv检测图像中的条形码

概述 在日常生活中,经常会看到条形码的应用,比如超市买东西的生活,图书馆借书的时候。。。 那么这些东西是如何做到准确检测出条形码的位置呢?...这就是今天要介绍的内容了 这篇博文的目标是演示使用计算机视觉和图像处理技术实现条形码的检测。...我们这里只需要一个开关,即 --image,它是我们图像的路径,其中包含我们想要检测的条形码。...中提供了相应的接口,可以很容易地找到图像中的最大轮廓,如果我们正确地完成了图像处理步骤,它应该会对应于条形码区域。..._01.jpg 另外还提供了其他的测试图片 英文原文链接:https://www.pyimagesearch.com/2014/11/24/detecting-barcodes-images-python-opencv

3.9K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python+opencv 实现图像人脸检测及视频中的人脸检测

    下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4....detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸...这类矩形特征模板由两个或多个全等的黑白矩形相邻组合而成,而矩形特征值是白色矩形的灰度值的和减去黑色矩形的灰度值的和,矩形特征对一些简单的图形结构,如线段、边缘比较敏感。...二、python+opencv实现人脸检测 1....自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频中人脸检测不准确。 4.

    1.9K20

    python+opencv 实现图像人脸检测及视频中的人脸检测

    下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4....detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸...这类矩形特征模板由两个或多个全等的黑白矩形相邻组合而成,而矩形特征值是白色矩形的灰度值的和减去黑色矩形的灰度值的和,矩形特征对一些简单的图形结构,如线段、边缘比较敏感。...二、python+opencv实现人脸检测 1....自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频中人脸检测不准确。 4.

    14.7K73

    用 OpenCV 检测图像中各物体大小

    属性 2:我们应该能够在图像中轻松地找到这个参考物体,要么基于物体的位置(如参考物体总是被放置在图像的左上角)或通过表象(像一个独特的颜色或形状,独特且不同于其他物体的物体)。...利用这个比率,我们可以计算图像中物体的大小。 基于计算机视觉的物体尺寸检测 既然我们知道「像素/度量」比率 ,就可以实现用于测量图像中物体大小的 Python 驱动程序脚本。...图 2:使用 OpenCV 、Python 、计算机视觉和图像处理技术测量图像中物体的大小。 上图所示,我们已经成功地计算出图像中每个物体的大小——我们的名片被正确地显示为 3.5 英寸 x 2英寸。...图4:最后一个用 Python + OpenCV 测量图像中物体大小的例子。 同样,结果也不是很完美,但这是由于(1)视角和(2)透镜失真,如上所述。...总结 在本篇博客中,我们学习了如何通过 Python 和 OpenCV 检测图像中的物体大小。

    4.5K10

    使用 OpenCV 进行图像中的性别预测和年龄检测

    人们的性别和年龄使得识别和预测他们的需求变得更加容易。 即使对我们人类来说,从图像中检测性别和年龄也很困难,因为它完全基于外表,有时很难预测,同龄人的外表可能与我们预期的截然不同。...实施 现在让我们学习如何使用 Python 中的 OpenCV 库通过相机或图片输入来确定年龄和性别。 使用的框架是 Caffe,用于使用原型文件创建模型。...time from google.colab.patches import cv2_imshow 第 2 步:在框架中查找边界框坐标 使用下面的用户定义函数,我们可以获得边界框的坐标,也可以说人脸在图像中的位置...下面的用户定义函数是 pipline 或者我们可以说是主要工作流程的实现,在该工作流程中,图像进入函数以获取位置,并进一步预测年龄范围和性别。...在这篇文章中,我们学习了如何创建一个年龄预测器,它也可以检测你的脸并用边框突出显示。

    2.7K20

    图像中的裂纹检测

    机器学习模型 我们想要建立一个机器学习模型,该模型能够对墙壁图像进行分类并同时检测异常的位置。为了达到这个目的需要建立一个有效的分类器。它将能够读取输入图像并将其分类为“损坏”或“未损坏”两个部分。...在最后一步,我们将利用分类器学到的知识来提取有用的信息,这将有助于我们检测异常情况。对于这个类任务,我们选择在Keras中重载VGG16来完成它。...局部异常 现在我们要对检测出异常的图像进行一定的操作,使墙壁图像裂缝被突出。我们需要的有用信息位于顶层。因此我们可以访问:卷积层:上层是VGG结构,还有网络创建的更多重要功能。...“解压缩”此信息在python中很容易:我们只需进行双线性上采样即可调整每个激活图的大小并计算点积。...,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。

    2K40

    图像中的裂纹检测

    机器学习模型 我们想要建立一个机器学习模型,该模型能够对墙壁图像进行分类并同时检测异常的位置。为了达到这个目的需要建立一个有效的分类器。它将能够读取输入图像并将其分类为“损坏”或“未损坏”两个部分。...在最后一步,我们将利用分类器学到的知识来提取有用的信息,这将有助于我们检测异常情况。对于这个类任务,我们选择在Keras中重载VGG16来完成它。...局部异常 现在我们要对检测出异常的图像进行一定的操作,使墙壁图像裂缝被突出。我们需要的有用信息位于顶层。因此我们可以访问:卷积层:上层是VGG结构,还有网络创建的更多重要功能。...“解压缩”此信息在python中很容易:我们只需进行双线性上采样即可调整每个激活图的大小并计算点积。...,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。

    91010

    如何用OpenCV在Python中实现人脸检测

    选自towardsdatascience 本教程将介绍如何使用 OpenCV 和 Dlib 在 Python 中创建和运行人脸检测算法。同时还将添加一些功能,以同时检测多个面部的眼睛和嘴巴。...运行以下命令: pip install opencv-python pip install dlib 文件生成的路径如下(版本不同,路径会稍有差别): /usr/local/lib/python3.7/...在训练该模型时,变量如下: 每个阶段分类器数量 每个阶段的特征数量 每个阶段的阈值 幸运的是,在 OpenCV 中,整个模型已经经过预训练,可直接用于人脸检测。...在测试图像上成功检测到人脸。现在开始实时检测! 实时人脸检测 下面继续进行实时人脸检测的 Python 实现。第一步是启动摄像头,并拍摄视频。然后,将图像转换为灰度图。这用于减小输入图像的维数。...实际上,我们应用了一个简单的线性变换,而不是每个像素用三个点来描述红、绿、蓝。 ? 这在 OpenCV 中是默认实现的。

    2.1K20

    如何用OpenCV在Python中实现人脸检测

    选自towardsdatascience 作者:Maël Fabien 机器之心编译 参与:高璇、张倩、淑婷 本教程将介绍如何使用 OpenCV 和 Dlib 在 Python 中创建和运行人脸检测算法...运行以下命令: pip install opencv-python pip install dlib 文件生成的路径如下(版本不同,路径会稍有差别): /usr/local/lib/python3.7/...在训练该模型时,变量如下: 每个阶段分类器数量 每个阶段的特征数量 每个阶段的阈值 幸运的是,在 OpenCV 中,整个模型已经经过预训练,可直接用于人脸检测。...在测试图像上成功检测到人脸。现在开始实时检测! 实时人脸检测 下面继续进行实时人脸检测的 Python 实现。第一步是启动摄像头,并拍摄视频。然后,将图像转换为灰度图。这用于减小输入图像的维数。...实际上,我们应用了一个简单的线性变换,而不是每个像素用三个点来描述红、绿、蓝。 ? 这在 OpenCV 中是默认实现的。

    2.1K30

    python中opencv图像处理实验(一)---灰度变换

    参考链接: 使用OpenCV在Python中进行图像处理 在上一篇中记录了,如何配置opencv环境的问题。本篇则记录对灰度图像进行一些常规处理。...我们只要在这个像素点矩阵中找到这个像素点的位置,比如第x行,第y列,所以这个像素点在这个像素点矩阵中的位置就可以表示成(x,y),因为一个像素点的颜色由红、绿、蓝三个颜色变量表示(R,G,B),所以我们通过给这三个变量赋值...图片的灰度化:将一个像素点的三个颜色变量相等,R=G=B,此时该值称为灰度值 直接调用opencv中的函数,读入的图片可以与代码文件放在一起这样可以省略输入图片路径。...在灰度图像中像素值在0~255,二值化后图像中像素值为0或255。...伽马值小于1时,会拉伸图像中灰度级较低的区域,同时会压缩灰度级较高的部分 伽马值大于1时,会拉伸图像中灰度级较高的区域,同时会压缩灰度级较低的部分 4.对灰度图像进行对数变换 # 对数变换 logc =

    1.7K30

    OpenCV中基于Retinex的图像增强实现

    在对数域中,用原图像减去低通滤波图像,得到高频增强的图像G(x,y)。 ? 对G(x,y)取反对数,得到增强后的图像: ? 对R(x,y)做对比度增强,得到最终的结果图像。...需要注意的是,最后一步量化的过程中,并不是将 Log[R(x,y)] 进行 Exp 化得到 R(x,y) 的结果,而是直接将 Log[R(x,y)] 的结果直接用如下公式进行量化: ?...Vec2b—表示每个Vec2b对象中,可以存储2个char(字符型)数据 Vec3b—表示每一个Vec3b对象中,可以存储3个char(字符型)数据,比如可以用这样的对象,去存储RGB图像中的...Vec4b—表示每一个Vec4b对象中,可以存储4个字符型数据,可以用这样的类对象去存储—4通道RGB+Alpha的图 SSR算法实现 void SingleScaleRetinex(...//高斯模糊,当size为零时将通过sigma自动进行计算 GaussianBlur(doubleImage, gaussianImage, Size(0, 0), sigma); //OpenCV

    2.7K21

    优化图像处理中的图像格式:OpenCV中的PNG、JPG和WEBP

    在计算机视觉和图像处理应用中,选择正确的图像格式可以影响性能和质量。...让我们深入了解每种格式在图像处理方面的独特特性,并提供实际的代码示例,展示如何使用Python中的OpenCV加载和保存这些格式。 1....在OpenCV中的使用: import cv2 # Reading a PNG image image = cv2.imread("example.png", cv2.IMREAD_UNCHANGED...在计算机视觉中,JPG通常用于像素精度不太关键的数据集,如目标检测或分类任务。 劣势: JPG的有损特性会导致一些数据丢失,特别是在多次保存后,这可能会随时间降低图像质量。...在OpenCV中的使用: import cv2 # Reading a JPG image image = cv2.imread("example.jpg") # Saving as JPG with

    1.8K10

    使用OpenCV测量图像中物体的大小

    原文链接:https://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/ 今天的文章是关于测量图像中物体大小和计算它们之间距离的系列文章的第二部分...测量图像中物体的大小类似于计算相机到物体的距离——在这两种情况下,我们都需要定义一个比率来测量每个计算对象的像素数。 我将其称为“像素/度量”比率,我将在下面中对其进行更正式的定义。...属性2:我们应该能够轻松地找到这个引用对象在一个图像,要么基于对象的位置(如引用对象总是被放置在一个图像的左上角)或通过表象(像一个独特的颜色或形状,独特和不同图像中所有其他对象)。...使用这个比率,我们可以计算图像中物体的大小。 用计算机视觉测量物体的大小 现在我们了解了“像素/度量”比率,我们可以实现用于测量图像中对象大小的Python驱动程序脚本。...如果轮廓不够大,我们舍弃该区域,认为它是边缘检测过程中遗留下来的噪声(第4和5行)。 如果轮廓区域足够大,我们将计算图像的旋转包围框(第8-10行)。

    4.3K20

    OpenCV图像处理中“投影技术”的使用

    问题引出 本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用...在这样采集到的图像中,大量存在黑色的定位区块: ? 如果进一步定位,可以得到这样的结果: ? 如果做成连续图像 ? ?...在这波峰波谷中,存在着的“量化”结果,对应了答题卡中的定位关系 概念抽象 在前面的分析里,我们已经基本建立起“投影”的概念。...在这样的OCR识别中,首先可以通过投影的方法,实现字符的分割。 2 . 压板识别 ? ? 在这样的项目中,同样可以通过投影的方法,获得各个压板的准确定位。 3、轮廓展开分析 ?...在类似树叶这样的测量中,可以通过“极坐标转换”,将树叶的这样的曲线转换成可以分析的投影,从而得到比如“树叶有多少个分叉”“有无缺陷”这样的定量信息。 君子藏器于身,待时而动

    1.9K20

    OpenCV 3.1.0中的图像放缩与旋转

    OpenCV在3.1.0版本中的图像放缩与旋转操作比起之前版本中更加的简洁方便,同时还提供多种插值方法可供选择。...首先来看图像放缩,通过OpenCV核心模块API函数resize即可实现图像的放大与缩小。...OpenCV3.1.0中实现图像旋转需要用到的两个API函数分别是 - getRotationMatrix2D - warpAffine 第一个函数是用来产生旋转矩阵M,第二个函数是根据旋转矩阵M实现图像指定角度的旋转...从上面旋转以后图像可以看到四个角被剪切掉了,无法显示,我们希望旋转之后图像还能够全部显示,在之前2.x的OpenCV版本中要实现这样的功能,需要很多的数学知识,而在3.1.0中只需要添加如下几行代码即可实现旋转之后的全图显示...可以看出基于OpenCV3.1.0实现图像旋转的时候同样会涉及到像素插值问题,可以选择的插值算法跟放缩时候一致。在OpenCV3.1.0中默认的插值算法是线性插值(INTER_LINEAR=1)。

    2.8K70

    OpenCV中检测ChArUco的角点(2)

    论文阅读模块将分享点云处理,SLAM,三维视觉,高精地图相关的文章。 opencv中ArUco模块实践(1) ChAruco标定板 ArUCo标记板是非常有用的,因为他们的快速检测和多功能性。...vectorcharucoIds:charucoCorners中每个检测到的角点的ID。 ChArUco角点的检测基于先前检测到的标记。...inputimage:检测到标记的原始图像。图像是必要的执行亚像素细化在Aruco角点。...如果没有检测到周围的两个标记中的任何一个,这通常意味着该区域存在某种遮挡或图像质量不好。在任何情况下,最好不要考虑该角点,因为我们想要的是确保插值的ChArUco角点非常精确。...(通常与检测角点的图像相同)。

    3.6K40

    卫星图像中的船舶检测

    :图像中心点的经度和纬度坐标 dataset也作为JSON格式的文本文件分发,包含:data,label,scene_ids和location list 单个图像的像素值数据存储为19200个整数的列表...标签,scene_ids和位置中的索引i处的列表值每个对应于数据列表中的第i个图像 类标签:“船”类包括1000个图像,靠近单个船体的中心。...“无船”类包括3000幅图像,1/3是不同土地覆盖特征的随机抽样。 - 不包括船舶的任何部分。下一个1/3是“部分船只”,而1/3是先前被机器学习模型错误标记的图像(由于强大的线性特征)。...想要实现的目标:检测卫星图像中船舶的位置,可用于解决以下问题:监控港口活动和供应链分析。...如果X [0]中的某些照片可能具有相同的所有3个波段,只需尝试另一个X [3]。

    2K31
    领券