在Scala/Spark中打印RowMatrix可以使用以下步骤:
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder()
.appName("Print RowMatrix")
.master("local")
.getOrCreate()
val rows = Seq(
Vectors.dense(1.0, 2.0, 3.0),
Vectors.dense(4.0, 5.0, 6.0),
Vectors.dense(7.0, 8.0, 9.0)
)
val rdd = spark.sparkContext.parallelize(rows)
val rowMatrix = new RowMatrix(rdd)
val rowArray = rowMatrix.rows.collect()
rowArray.foreach(row => println(row))
完整的示例代码如下:
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.sql.SparkSession
object PrintRowMatrix {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("Print RowMatrix")
.master("local")
.getOrCreate()
val rows = Seq(
Vectors.dense(1.0, 2.0, 3.0),
Vectors.dense(4.0, 5.0, 6.0),
Vectors.dense(7.0, 8.0, 9.0)
)
val rdd = spark.sparkContext.parallelize(rows)
val rowMatrix = new RowMatrix(rdd)
val rowArray = rowMatrix.rows.collect()
rowArray.foreach(row => println(row))
}
}
这样就可以在Scala/Spark中打印RowMatrix的行向量了。请注意,这只是一个简单的示例,实际应用中可能需要根据具体需求进行适当的调整和扩展。
领取专属 10元无门槛券
手把手带您无忧上云