首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Python中使用异常值和四分位数绘制箱线图

在Python中,可以使用matplotlib库来绘制箱线图,并使用异常值和四分位数来展示数据的分布情况。

首先,需要导入matplotlib库和numpy库:

代码语言:txt
复制
import matplotlib.pyplot as plt
import numpy as np

接下来,创建一个包含随机数据的数组:

代码语言:txt
复制
data = np.random.randn(100)

然后,使用numpy库的percentile函数来计算数据的四分位数:

代码语言:txt
复制
q1 = np.percentile(data, 25)
q3 = np.percentile(data, 75)

接着,计算异常值的范围,一般将小于q1-1.5(q3-q1)或大于q3+1.5(q3-q1)的值视为异常值:

代码语言:txt
复制
lower_bound = q1 - 1.5 * (q3 - q1)
upper_bound = q3 + 1.5 * (q3 - q1)

然后,使用matplotlib库的boxplot函数绘制箱线图,并将异常值标记出来:

代码语言:txt
复制
plt.boxplot(data, showfliers=True)
plt.plot([1], [lower_bound], marker='o', markersize=5, color='red', label='Outliers')
plt.plot([1], [upper_bound], marker='o', markersize=5, color='red')
plt.legend()
plt.show()

这样就可以在Python中使用异常值和四分位数绘制箱线图了。

推荐的腾讯云相关产品:无

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【陆勤笔记】《深入浅出统计学》3分散性与变异性的量度:强大的“距”

    事实是否可靠,我们该问谁?我们该如何分析和判断? 平均数在寻找数据典型值方面是一个好手段,但是平均数不能说明一切。平均数能够让你知道数据的中心所在,但若要给数据下结论,尽有均值、中位数、众数还无法提供充足的信息。分析数据的分散性和变异性,可以更好地认识和理解数据。通过各种距和差来度量分散性和变异性。 使用全距区分数据集 平均数往往给出部分信息,它让我们能够确定一批数据的中心,却无法知道数据的变动情况。 通过计算全距(也叫极差),轻易获知数据的分散情况。全距指出数据的扩展范围,计算方法是用数据集中的最大数减去

    05

    Python 异常值分析

    异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。 异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点分析。 (1)简单统计量分析 可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理的范围。如客户年龄的最大值为199岁,则该变量的取值存在异常。 (2)3原则 如果数据服从正态分布,在3原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3之外的值出现的概率为P(|x-|>3)≤0.003,属于极个别的小概率事件。 如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。 (3)箱型图分析 箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL-1.5IQR或大于QU+1.5IQR的值。QL称为下四分位数,表示全部观察值中有四分之一的数据取值比它小;QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR称为四分位数间距,是上四分位数QU与下四分位数QL之差,其间包含了全部观察值的一半。 箱型图依据实际数据绘制,没有对数据作任何限制性要求(如服从某种特定的分布形式),它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响。由此可见,箱型图识别异常值的结果比较客观,在识别异常值方面有一定的优越性,如图3-1所示。

    02

    阿榜的生信笔记8—GEO图表介绍

    哈喽,我是学习生物信息学的阿榜!非常感谢您能够点击进来查看我的笔记。我致力于通过笔记,将生物信息学知识分享给更多的人。如果有任何纰漏或谬误,欢迎指正。让我们一起加油,一起学习进步鸭🦆这份学习目录可以让大家更容易地了解笔记里面的内容哦😊:一、热图输入数据:数值型矩阵或者数据框图片图例中的颜色深浅表示数值大小,相关性大小二、散点图和箱型图散点图通过在二维平面上绘制数据点来展示两个变量之间的关系。散点图可用于显示数据之间的关系,如相关性或聚集情况,以及异常值的存在。箱型图(又称箱线图)是一种展示数据集中值分布情况

    00
    领券