首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Pyspark中根据另一列的值选择另一列?

在Pyspark中,可以使用条件表达式和列选择操作来根据另一列的值选择另一列。以下是一个完善且全面的答案:

在Pyspark中,可以使用whenotherwise函数来实现根据另一列的值选择另一列的操作。具体步骤如下:

  1. 导入必要的模块和函数:
代码语言:txt
复制
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, when
  1. 创建SparkSession对象:
代码语言:txt
复制
spark = SparkSession.builder.getOrCreate()
  1. 创建一个示例数据集:
代码语言:txt
复制
data = [("Alice", 25, "F"), ("Bob", 30, "M"), ("Charlie", 35, "M")]
df = spark.createDataFrame(data, ["name", "age", "gender"])
df.show()

输出结果:

代码语言:txt
复制
+-------+---+------+
|   name|age|gender|
+-------+---+------+
|  Alice| 25|     F|
|    Bob| 30|     M|
|Charlie| 35|     M|
+-------+---+------+
  1. 使用条件表达式和列选择操作来选择另一列:
代码语言:txt
复制
df.select("name", "age", "gender", when(col("gender") == "M", col("age")).otherwise(None).alias("selected_age")).show()

输出结果:

代码语言:txt
复制
+-------+---+------+------------+
|   name|age|gender|selected_age|
+-------+---+------+------------+
|  Alice| 25|     F|        null|
|    Bob| 30|     M|          30|
|Charlie| 35|     M|          35|
+-------+---+------+------------+

在上述代码中,我们使用when函数来判断gender列的值是否为"M",如果是,则选择age列的值,否则选择None。最后使用alias函数给新列命名为"selected_age"。

这样,我们就根据另一列的值选择了另一列,并将结果显示出来。

推荐的腾讯云相关产品:腾讯云分析型数据库TDSQL、腾讯云数据仓库CDW、腾讯云弹性MapReduceEMR、腾讯云云服务器CVM等。你可以通过访问腾讯云官方网站获取更多关于这些产品的详细信息和介绍。

腾讯云产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Excel公式技巧71:查找一列中有多少个值出现在另一列中

学习Excel技术,关注微信公众号: excelperfect 有时候,我们想要知道某列中有多少个值同时又出现在另一列中,例如下图1所示,列B中有一系列值,列D中有一系列值,哪些值既出现有列B中又出现在列...因为数据较少,不难看出,在列B中仅有2个值出现在列D中,即“完美Excel”和“Office”。 ?...MATCH(B3:B13,B3:B13,0) 查找单元格区域B3:B13中每个单元格的值在该区域首次出现的位置,得到数组: {1;2;3;1;5;6;2;3;5;1;2} 公式中: ROW(B3:B13...TRUE;TRUE;FALSE;TRUE;TRUE;FALSE;FALSE;FALSE;FALSE;FALSE} 其中TRUE表明该单元格中的值首次在该区域出现,FALSE表明该单元格中的值已经在前面出现过...传递给COUNT函数统计数组中数字的个数: COUNT({1;5;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A}) 得到结果: 2 即列B中有两个值在列D中出现

3.3K20
  • 合并excel的两列,为空的单元格被另一列有值的替换?

    一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两列,为空的单元格被另一列有值的替换。...【逆光】:好的,我去看看这个函数谢谢 【逆光】:我列表的两列不挨着, a b互补,我需要变成c (c 包含 a 和 b) 【Siris】:最笨的方法遍历判断呗 【逆光】:太慢了,我的数据有点多。...【Siris】:你是说c列是a列和b列的内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里用CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单的思路是分成3行代码。就是你要给哪一列全部赋值为相同的值,就写df['列名'] = '值'。不要加方括号,如果是数字,就不要加引号。...【瑜亮老师】:3列一起就是df.loc[:, ['列1', '列', '列3'']] = ["值", 0, 0] 【不上班能干啥!】:起始这行没有报错,只是警告,因为你这样操作会影响赋值前的变量。

    11910

    问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

    引言:本文整理自vbaexpress.com论坛,有兴趣的朋友可以研阅。...Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...A:实现上图1中所示效果的VBA代码如下: Sub ColorText() Dim ws As Worksheet Dim rDiseases As Range Dim rCell...End If Loop Next iDisease Next rCell End Sub 代码中使用Split函数以回车符来拆分单元格中的数据并存放到数组中...,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。

    7.2K30

    Excel公式练习38: 求一列中的数字剔除掉另一列中的数字后剩下的数字

    本次的练习是:如下图1所示,在单元格区域A2:A12和B2:B12中给定两列数字,要在列C中从单元格C2开始生成一列数字。规则如下: 1. 列B中的数字的数量要小于等于列A中数字的数量。 2....列B中的任意数字都可以在列A中找到。 3. 在列A或列B已存放数字的单元格之间不能有任何空单元格。 4. 在列C中的数字是从列A中的数字移除列B中的数字在列A中第一次出现的数字后剩下的数字。 5....换句话说,列B和列C中的数字合起来就是列A中的数字。 ? 图1 在单元格D1中的数字等于列A中的数字数量减去列B中的数字数量后的值,也就是列C中数字的数量。...公式的思路就是构造一个数组,能够实现在List1和List2之间执行MATCH函数查找时,列C中的数值就是找不到的值,返回FALSE。 然而,实现起来并不是想像中的那么简单。...我们必须首先确保生成的值是唯一的,并且仍然可以通过某种方式与原始值相对应,从而提取出原始值。 公式中的List1、List2、Arry1和Arry2是定义的四个名称。

    3.4K20

    Excel应用实践16:搜索工作表指定列范围中的数据并将其复制到另一个工作表中

    学习Excel技术,关注微信公众号: excelperfect 这里的应用场景如下: “在工作表Sheet1中存储着数据,现在想要在该工作表的第O列至第T列中搜索指定的数据,如果发现,则将该数据所在行复制到工作表...Sheet2中。...用户在一个对话框中输入要搜索的数据值,然后自动将满足前面条件的所有行复制到工作表Sheet2中。” 首先,使用用户窗体设计输入对话框,如下图1所示。 ?...("O2:T"& lngRow) '查找的数据文本值 '由用户在文本框中输入 FindWhat = "*" &Me.txtSearch.Text & "*..." '调用FindAll函数查找数据值 '存储满足条件的所有单元格 Set rngFoundCells =FindAll(SearchRange:=rngSearch

    6.1K20

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    Row元素的所有列名:** **选择一列或多列:select** **重载的select方法:** **还可以用where按条件选择** --- 1.3 排序 --- --- 1.4 抽样 --- --...functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]列的所有值:** **修改列的类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------...另一种方式通过另一个已有变量: result3 = result3.withColumn('label', df.result*0 ) 修改原有df[“xx”]列的所有值: df = df.withColumn...,然后生成多行,这时可以使用explode方法   下面代码中,根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示 jdbcDF.explode( "c3" , "c3...,一列为分组的组名,另一列为行总数 max(*cols) —— 计算每组中一列或多列的最大值 mean(*cols) —— 计算每组中一列或多列的平均值 min(*cols) ——

    30.5K10

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...# 1.列的选择 # 选择一列的几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符中才能使用 color_df.select('length...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...({'LastName':'--', 'Dob':'unknown'}).show() 9、空值判断 有两种空值判断,一种是数值类型是nan,另一种是普通的None # 类似 pandas.isnull...']) 12、 生成新列 # 数据转换,可以理解成列与列的运算 # 注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions

    10.5K10

    使用CDSW和运营数据库构建ML应用3:生产ML模型

    在最后一部分中,我们将讨论一个演示应用程序,该应用程序使用PySpark.ML根据Cloudera的运营数据库(由Apache HBase驱动)和Apache HDFS中存储的训练数据来建立分类模型。...在HBase和HDFS中训练数据 这是训练数据的基本概述: 如您所见,共有7列,其中5列是传感器读数(温度,湿度比,湿度,CO2,光)。...还有一个“日期”列,但是此演示模型不使用此列,但是任何时间戳都将有助于训练一个模型,该模型应根据一天中的时间考虑季节变化或AC / HS峰值。...在此演示中,此训练数据的一半存储在HDFS中,另一半存储在HBase表中。该应用程序首先将HDFS中的数据加载到PySpark DataFrame中,然后将其与其余训练数据一起插入到HBase表中。...其次,添加一个功能,当用户确认占用预测正确时,将其添加到训练数据中。 为了模拟实时流数据,我每5秒在Javascript中随机生成一个传感器值。

    2.8K10

    PySpark SQL——SQL和pd.DataFrame的结合体

    groupby/groupBy:分组聚合 分组聚合是数据分析中最为常用的基础操作,其基本用法也与SQL中的group by关键字完全类似,既可直接根据某一字段执行聚合统计,也可根据某一列的简单运算结果进行统计...SQL中的用法也是完全一致的,都是根据指定字段或字段的简单运算执行排序,sort实现功能与orderby功能一致。...以上主要是类比SQL中的关键字用法介绍了DataFrame部分主要操作,而学习DataFrame的另一个主要参照物就是pandas.DataFrame,例如以下操作: dropna:删除空值行 实际上也可以接收指定列名或阈值...中的drop_duplicates函数功能完全一致 fillna:空值填充 与pandas中fillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各列指定不同填充 fill:广义填充 drop...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('

    10K20

    PySpark UD(A)F 的高效使用

    需要注意的一件重要的事情是,除了基于编程数据的处理功能之外,Spark还有两个显著的特性。一种是,Spark附带了SQL作为定义查询的替代方式,另一种是用于机器学习的Spark MLlib。...举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔值is_sold列,想要过滤带有sold产品的行。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。...42 的键 x 添加到 maps 列中的字典中。

    19.7K31

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。

    9510

    Spark Extracting,transforming,selecting features

    ,比如LDA; 在Fitting过程中,CountVectorizer会选择语料库中词频最大的词汇量,一个可选的参数minDF通过指定文档中词在语料库中的最小出现次数来影响Fitting过程,另一个可选的二类切换参数控制输出向量...N的真值序列转换到另一个在频域的长度为N的真值序列,DCT类提供了这一功能; from pyspark.ml.feature import DCT from pyspark.ml.linalg import...参数,如果用户选择保留,那么这些NaN值会被放入一个特殊的额外增加的桶中; 算法:每个桶的范围的选择是通过近似算法,近似精度可以通过参数relativeError控制,如果设置为0,那么就会计算准确的分位数...输出新的向量列,新的向量列中的元素是通过这些索引指定选择的,有两种指定索引的方式: 通过setIndices()方法以整数方式指定下标; 通过setNames()方法以字符串方式指定索引,这要求向量列有一...:返回卡方测试中的多少比例的Top特征; fpr:返回所有p值小于阈值的特征,它控制选择的false positive比例; fdr:返回false descovery rate小于阈值的特征; fwe

    21.9K41

    如何使用Apache Spark MLlib预测电信客户流失

    完整的源代码和输出可在IPython笔记本中找到。该仓库还包含一个脚本,显示如何在CDH群集上启动具有所需依赖关系的IPython笔记本。...其余的字段将进行公平的竞赛,来产生独立变量,这些变量与模型结合使用用来生成预测值。 要将这些数据加载到Spark DataFrame中,我们只需告诉Spark每个字段的类型。...在我们的例子中,我们会将输入数据中用字符串表示的类型变量,如intl_plan转化为数字,并index(索引)它们。 我们将会选择列的一个子集。...一个随机的预测器会将一半客户标记为流失,另一半客户标记为非流失,将会产生一条直对角线的ROC曲线。这条线将单位正方形切割成两个大小相等的三角形,因此曲线下方的面积为0.5。...我们只用我们的测试集对模型进行评估,以避免模型评估指标(如AUROC)过于乐观,以及帮助我​​们避免过度拟合。

    4K10

    大数据开发!Pandas转spark无痛指南!⛵

    中可以指定要分区的列:df.partitionBy("department","state").write.mode('overwrite').csv(path, sep=';')注意 ②可以通过上面所有代码行中的...parquet 更改 CSV 来读取和写入不同的格式,例如 parquet 格式 数据选择 - 列 Pandas在 Pandas 中选择某些列是这样完成的: columns_subset = ['employee...条件选择 PandasPandas 中根据特定条件过滤数据/选择数据的语法如下:# First methodflt = (df['salary'] >= 90_000) & (df['state'] =...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python

    8.2K72

    独家 | 一文读懂PySpark数据框(附实例)

    人们往往会在一些流行的数据分析语言中用到它,如Python、Scala、以及R。 那么,为什么每个人都经常用到它呢?让我们通过PySpark数据框教程来看看原因。...大卸八块 数据框的应用编程接口(API)支持对数据“大卸八块”的方法,包括通过名字或位置“查询”行、列和单元格,过滤行,等等。统计数据通常都是很凌乱复杂同时又有很多缺失或错误的值和超出常规范围的数据。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。...查询不重复的多列组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。 这里我们的条件是Match ID等于1096,同时我们还要计算有多少记录或行被筛选出来。 8.

    6K10
    领券