首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Netlogo中提取网络邻域

在NetLogo中,可以通过使用linkslink-neighbors命令来提取网络邻域。

  1. 首先,使用links命令创建网络连接。例如,可以使用以下命令创建一个具有10个节点的随机网络:
代码语言:txt
复制

create-turtles 10

ask turtles [

代码语言:txt
复制
 create-links-with n-of 3 other turtles

]

代码语言:txt
复制

上述代码将创建10个节点,并为每个节点创建3个随机连接。

  1. 接下来,可以使用link-neighbors命令来提取每个节点的邻居节点。例如,可以使用以下命令提取节点0的邻居节点:
代码语言:txt
复制

let neighbors link-neighbors of turtle 0

代码语言:txt
复制

上述代码将返回一个代表节点0的邻居节点的列表。

如果想要获取邻居节点的数量,可以使用count命令:

代码语言:txt
复制

let num-neighbors count link-neighbors of turtle 0

代码语言:txt
复制

上述代码将返回节点0的邻居节点数量。

NetLogo中提取网络邻域的应用场景包括社交网络分析、网络传播模型、网络动力学等。

腾讯云相关产品和产品介绍链接地址:

请注意,以上仅为示例产品,腾讯云还提供其他丰富的云计算产品和服务,可根据具体需求选择适合的产品。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

ICCV2023 SOTA 长短距离循环更新网络--LRRU介绍

本文介绍了一种名为长短距离循环更新(LRRU)网络的轻量级深度网络框架,用于深度补全。深度补全是指从稀疏的距离测量估计密集的深度图的过程。现有的深度学习方法使用参数众多的大型网络进行深度补全,导致计算复杂度高,限制了实际应用的可能性。相比之下,本文提出的LRRU网络首先利用学习到的空间变体核将稀疏输入填充以获得初始深度图,然后通过迭代更新过程灵活地更新深度图。迭代更新过程是内容自适应的,可以从RGB图像和待更新的深度图中学习到核权重。初始深度图提供了粗糙但完整的场景深度信息,有助于减轻直接从稀疏数据回归密集深度的负担。实验证明,LRRU网络在减少计算复杂度的同时实现了最先进的性能,更适用于深度补全任务。

05
  • IJCAI2020 | 知识图神经网络预测药物与药物相互作用

    今天给大家介绍的是湖南大学信息科学与工程学院全哲教授课题组在IJCAI 2020会议上发表的一篇关于知识图神经网络预测药物与药物相互作用的文章。在本文中,作者提出了一个称为知识图神经网络(KGNN)的端到端框架,以预测药物与药物相互作用(DDI)。KGNN框架可通过在知识图谱(KG)中挖掘与药物关联的实体关系,以有效地获取药物及其潜在的邻居实体信息。为了提取KG中存在的高阶拓扑结构和语义关系,KGNN从KG中每个实体的邻域中学习作为它们的局部感知域,然后将当前实体表示的偏差及其邻域信息进行聚合。这样,可将感知域自然地扩展到多个跃点,以对高阶拓扑信息进行建模并获得潜在的长距离药物相关性。

    06

    MDNN: 一种用于药物-药物反应预测的多模态深度神经网络

    今天介绍的是中南大学高建良团队和他人合作发表在IJCAI2021上的一篇文章“MDNN: A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events”。本文指出许多基于人工智能的技术已经被提出并用于预测药物-药物反应(DDI),而现有的研究方法较少关注DDI与靶标、酶等多模态数据之间的潜在相关性。为了解决这一问题,作者提出了一个用于DDI预测的多模态深度神经网络(MDNN)。本文设计了一个基于药物知识图谱(DKG)的通道和基于异质特征(HF)的通道的双通道框架来获取药物的多模态表征。最后,通过一个多模态融合神经层来探索药物多模态表征之间的互补关系。作者在真实数据集上进行了广泛的实验。结果表明,MDNN能够准确预测DDI,并优于现有的模型。

    02

    【论文解读】针对生成任务的多模态图学习

    多模态学习结合了多种数据模式,拓宽了模型可以利用的数据的类型和复杂性:例如,从纯文本到图像映射对。大多数多模态学习算法专注于建模来自两种模式的简单的一对一数据对,如图像-标题对,或音频文本对。然而,在大多数现实世界中,不同模式的实体以更复杂和多方面的方式相互作用,超越了一对一的映射。论文建议将这些复杂的关系表示为图,允许论文捕获任意数量模式的数据,并使用模式之间的复杂关系,这些关系可以在不同样本之间灵活变化。为了实现这一目标,论文提出了多模态图学习(MMGL),这是一个通用而又系统的、系统的框架,用于从多个具有关系结构的多模态邻域中捕获信息。特别是,论文关注用于生成任务的MMGL,建立在预先训练的语言模型(LMs)的基础上,旨在通过多模态邻域上下文来增强它们的文本生成。

    02

    论文综述 | GNN+CV的近期进展~

    图神经网络(GNNs)在图表示学习方面获得了动力,并在中提高了艺术水平。各种领域,例如数据挖掘(例如,社交网络分析和推荐系统),计算机视觉(例如,对象检测和点云学习),自然语言处理(例如,关系提取和序列学习),仅举几例。随着Transformer在自然语言处理和计算机视觉中的出现,图Transformer在Transformer架构中嵌入了一个图结构,以克服局部邻域聚集的限制,同时避免严格的结构归纳偏差。在本文中,我们从面向任务的角度全面回顾了计算机视觉中的gnn和图Transformer。具体来说,我们将其在计算机视觉中的应用根据输入数据的模态分为五类,即2D自然图像、视频、3D数据、视觉+语言和医学图像。在每个类别中,我们根据一组视觉任务进一步划分应用程序。这种面向任务的分类法允许我们检查不同的基于gnn的方法是如何处理每个任务的,以及这些方法的性能如何。在必要的初步工作的基础上,我们提供了任务的定义和挑战,对代表性方法的深入报道,以及关于见解、局限性和未来方向的讨论。

    02

    什么样的点可以称为三维点云的关键点?

    这个工作来自于中国香港科技大学和中国香港城市大学。我们知道,随着三维传感器以及相关扫描技术的进步,三维点云已经成为三维视觉领域内一项十分重要的数据形式。并且随着深度学习技术的发展,许多经典的点云深度学习处理方法被提出来。但是,现有的大多数方法都关注于点云的特征描述子学习。并且,在稠密的点云数据帧中,如果对所有点云都进行处理,将会带来巨大的计算和内存压力。针对这种问题,提取部分具有代表性的关键点则成为一种自然而且有效的策略。但是,什么样的点可以称为三维点云中的关键点呢?这个问题仍然是一个开放的、没有明确答案的问题。

    03

    object detection中的非极大值抑制(NMS)算法

    前言 什么是NMS算法呢?即非极大值抑制,它在目标检测、目标追踪、三维重建等方面应用十分广泛,特别是在目标检测方面,它是目标检测的最后一道关口,不管是RCNN、还是fast-RCNN、YOLO等算法,都使用了这一项算法。 一、概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。 NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等。本文主要以目标检测中的应用加以说明。

    05

    论文 | 一切皆可连接:图神经网络 | 大牛GAT作者Petar Velickovic最新综述

    在许多方面,图是我们从自然界接收数据的主要形式。这是因为我们看到的大多数模式,无论是在自然系统还是人工系统中,都可以使用图结构语言来优雅地表示。突出的例子包括分子(表示为原子和键的图)、社交网络和运输网络。这种潜力已经被主要的科学和工业团体看到,其已经受到影响的应用领域包括流量预测、药物发现、社交网络分析和推荐系统。此外,前几年机器学习最成功的一些应用领域——图像、文本和语音处理——可以被视为图表示学习的特例,因此这些领域之间存在大量的信息交换。这项简短调查的主要目的是使读者能够吸收该领域的关键概念,并在相关领域的适当背景下定位图表示学习。

    01

    PNEN:金字塔结构与Non-local非局部结构联合增强,提升low-level图像处理任务性能

    现在,用于low-level图像处理任务的神经网络通常是通过堆叠卷积层来实现的,每个卷积层仅包含来自一个小范围的上下文信息。随着更多卷积层的堆叠,卷积神经网络可以探索更多的上下文特征。但是,要充分利用远距离依赖关系较困难并且需要较多的计算量。由此,本文提出了一种新颖的non-local模块:金字塔non-local模块,以建立每个像素与所有剩余像素之间的连接。所提出的模块能够有效利用不同尺度的低层特征之间的成对依赖性。具体而言,首先通过学习由具有全分辨率的查询特征图和具有缩减分辨率的参考特征图所构成的金字塔结构来捕获多尺度相关性,然后利用多尺度参考特征的相关性来增强像素级特征表示。整个计算过程在同时考虑了内存消耗和计算成本。基于所提出的模块,本文还设计了一个金字塔non-local增强网络用于图像恢复任务中边缘保留的图像平滑处理,在比较三种经典的图像平滑算法中达到了最先进的性能。另外,可以将金字塔non-local模块直接合并到卷积神经网络中,以进行其他图像恢复任务,并可以将其集成到用于图像去噪和单图像超分辨率的现有方法中,以实现性能的持续改善。

    02

    Nat. Mach. Intell. | MolCLR:一个用于分子表征学习的自监督框架

    今天介绍的是卡内基梅隆大学化学工程系的Amir Barati Farimani 教授最新发表在 Nature Machine Intelligence上的文章 ”Molecular contrastive learning of representations via graph neural networks”. 该文提出一种自监督的图神经网络框架MolCLR,利用大量无监督的标签进行自监督学习,有效缓解了因为数据标记有限而阻碍将分子机器学习推广到巨大的化学空间的难题。同时,本文提出了三种全新的分子图的增强方法:原子屏蔽、键删除以及子图删除,所提的分子图增强方法保证了增强时同一分子的一致性最大化以及不同分子一致性的最小化。实验表明,MolCLR 大大改善了 GNN 在各种分子特性基准上的表现。

    04
    领券