在Light GBM管道中使用eval_result方法,可以用来评估模型在训练集和验证集上的性能表现,并且可以用于早停(early stopping)策略的选择。eval_result方法返回一个字典对象,其中包含模型在每个评估指标上的结果。
在使用Light GBM管道时,可以通过以下步骤来使用eval_result方法:
import lightgbm as lgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
data = load_iris()
X_train, X_valid, y_train, y_valid = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
params = {
'objective': 'multiclass',
'num_class': 3,
'metric': 'multi_logloss'
}
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_valid, label=y_valid)
model = lgb.train(params, train_data, valid_sets=[train_data, valid_data], num_boost_round=100, early_stopping_rounds=10)
eval_results = model.evals_result()
print(eval_results['training']['multi_logloss'])
print(eval_results['valid_1']['multi_logloss'])
eval_results返回的字典对象包含了训练集和验证集的性能指标,例如'multi_logloss'代表多类别对数损失。可以根据具体需求选择其他指标进行评估。
腾讯云相关产品和产品介绍链接地址: 腾讯云机器学习平台(Tencent Machine Learning Platform):https://cloud.tencent.com/product/tensorflow 腾讯云数据智能(Data Intelligent):https://cloud.tencent.com/product/ai-data 腾讯云大数据平台(Big Data Platform):https://cloud.tencent.com/product/tbds 腾讯云分布式数据库(TencentDB for TDSQL):https://cloud.tencent.com/product/tdsql 腾讯云容器服务(Tencent Kubernetes Engine):https://cloud.tencent.com/product/tke 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm 腾讯云网络安全(Cloud Security):https://cloud.tencent.com/product/css 腾讯云音视频处理(Cloud Media Solution):https://cloud.tencent.com/product/mps 腾讯云物联网平台(IoT Hub):https://cloud.tencent.com/product/iothub 腾讯云移动开发(Mobile Development):https://cloud.tencent.com/product/mobiledt 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos 腾讯云区块链服务(Blockchain as a Service):https://cloud.tencent.com/product/baas 腾讯云全景VR(Panorama VR):https://cloud.tencent.com/product/vr 请注意,以上链接仅作为参考,具体产品和服务可根据实际需求进行选择。
领取专属 10元无门槛券
手把手带您无忧上云