首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Dataframe,Pyspark中用多个条件更新行

在Dataframe和Pyspark中,可以使用多个条件来更新行。下面是一种常见的方法:

  1. 首先,导入所需的库和模块:
代码语言:txt
复制
from pyspark.sql import SparkSession
from pyspark.sql.functions import when
  1. 创建SparkSession对象:
代码语言:txt
复制
spark = SparkSession.builder.getOrCreate()
  1. 创建一个示例Dataframe:
代码语言:txt
复制
data = [("Alice", 25, "F"), ("Bob", 30, "M"), ("Charlie", 35, "M")]
df = spark.createDataFrame(data, ["name", "age", "gender"])
df.show()

输出结果:

代码语言:txt
复制
+-------+---+------+
|   name|age|gender|
+-------+---+------+
|  Alice| 25|     F|
|    Bob| 30|     M|
|Charlie| 35|     M|
+-------+---+------+
  1. 使用多个条件更新行:
代码语言:txt
复制
df = df.withColumn("age", when((df.name == "Alice") & (df.gender == "F"), 26).otherwise(df.age))
df.show()

输出结果:

代码语言:txt
复制
+-------+---+------+
|   name|age|gender|
+-------+---+------+
|  Alice| 26|     F|
|    Bob| 30|     M|
|Charlie| 35|     M|
+-------+---+------+

在上述代码中,我们使用withColumn函数和when函数来更新满足多个条件的行。在这个例子中,我们将名字为"Alice"且性别为"F"的行的年龄更新为26,其他行的年龄保持不变。

这是一个简单的示例,你可以根据实际需求和条件进行更复杂的更新操作。在Pyspark中,还有其他方法可以实现类似的功能,如使用filter函数和select函数等。

关于Pyspark的更多信息和使用方法,你可以参考腾讯云的产品文档:Pyspark

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

独家 | 一文读懂PySpark数据框(附实例)

人们往往会在一些流行的数据分析语言中用到它,Python、Scala、以及R。 那么,为什么每个人都经常用到它呢?让我们通过PySpark数据框教程来看看原因。...它是多行结构,每一又包含了多个观察项。同一可以包含多种类型的数据格式(异质性),而同一列只能是同种类型的数据(同质性)。数据框通常除了数据本身还包含定义数据的元数据;比如,列和的名字。...查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6. 查询不重复的多列组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。...这里我们的条件是Match ID等于1096,同时我们还要计算有多少记录或被筛选出来。 8. 过滤数据(多参数) 我们可以基于多个条件(AND或OR语法)筛选我们的数据: 9....原文标题:PySpark DataFrame Tutorial: Introduction to DataFrames 原文链接:https://dzone.com/articles/pyspark-dataframe-tutorial-introduction-to-datafra

6K10
  • PySparkDataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...) — 2.3 过滤数据— #####过滤数据(filter和where方法相同): df = df.filter(df['age']>21) df = df.where(df['age']>21) 多个条件...—— 计算每组中一共有多少,返回DataFrame有2列,一列为分组的组名,另一列为总数 max(*cols) —— 计算每组中一列或多列的最大值 mean(*cols) —— 计算每组中一列或多列的平均值...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark...的DataFrame处理方法:增删改差 Spark-SQL之DataFrame操作大全 Complete Guide on DataFrame Operations in PySpark

    30.4K10

    python中的pyspark入门

    SparkSession​​是与Spark进行交互的入口点,并提供了各种功能,创建DataFrame、执行SQL查询等。...Intro") \ .getOrCreate()创建DataFramePySpark中,主要使用DataFrame进行数据处理和分析。...DataFrame是由和列组成的分布式数据集,类似于传统数据库中的表。...但希望这个示例能帮助您理解如何在实际应用场景中使用PySpark进行大规模数据处理和分析,以及如何使用ALS算法进行推荐模型训练和商品推荐。PySpark是一个强大的工具,但它也有一些缺点。...除了PySpark,还有一些类似的工具和框架可用于大规模数据处理和分析,:Apache Flink: Flink是一个流式处理和批处理的开源分布式数据处理框架。

    48820

    分布式机器学习原理及实战(Pyspark)

    对于每个Spark应用程序,Worker Node上存在一个Executor进程,Executor进程中包括多个Task线程。...PySpark是Spark的Python API,通过Pyspark可以方便地使用 Python编写 Spark 应用程序, 其支持 了Spark 的大部分功能,例如 Spark SQL、DataFrame...二、PySpark分布式机器学习 2.1 PySpark机器学习库 Pyspark中支持两个机器学习库:mllib及ml,区别在于ml主要操作的是DataFrame,而mllib操作的是RDD,即二者面向的数据集不一样...spark的分布式训练的实现为数据并行:按对数据进行分区,从而可以对数百万甚至数十亿个实例进行分布式训练。...PySpark项目实战 注:单纯拿Pyspark练练手,可无需配置Pyspark集群,直接本地配置下单机Pyspark,也可以使用线上spark集群(: community.cloud.databricks.com

    4K20

    PySpark SQL——SQL和pd.DataFrame的结合体

    导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...最大的不同在于pd.DataFrame和列对象均为pd.Series对象,而这里的DataFrame每一为一个Row对象,每一列为一个Column对象 Row:是DataFrame中每一的数据抽象...,后者则需相应接口: df.rdd # PySpark SQL DataFrame => RDD df.toPandas() # PySpark SQL DataFrame => pd.DataFrame...SQL中实现条件过滤的关键字是where,在聚合后的条件中则是having,而这在sql DataFrame中也有类似用法,其中filter和where二者功能是一致的:均可实现指定条件过滤。...基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的

    10K20

    Pyspark读取parquet数据过程解析

    parquet数据:列式存储结构,由Twitter和Cloudera合作开发,相比于式存储,其特点是: 可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量;压缩编码可以降低磁盘存储空间,使用更高效的压缩编码节约存储空间...那么我们怎么在pyspark中读取和使用parquet数据呢?我以local模式,linux下的pycharm执行作说明。...首先,导入库文件和配置环境: import os from pyspark import SparkContext, SparkConf from pyspark.sql.session import...SparkSession os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" #多个python版本时需要指定 conf = SparkConf().setAppName...;其中df.show(n) 表示只显示前n信息 6.type(df):显数据示格式 ?

    2.3K20

    PySpark 读写 Parquet 文件到 DataFrame

    本文中,云朵君将和大家一起学习如何从 PySpark DataFrame 编写 Parquet 文件并将 Parquet 文件读取到 DataFrame 并创建视图/表来执行 SQL 查询。...Pyspark SQL 提供了将 Parquet 文件读入 DataFrame 和将 DataFrame 写入 Parquet 文件,DataFrameReader和DataFrameWriter对方法...下面是关于如何在 PySpark 中写入和读取 Parquet 文件的简单说明,我将在后面的部分中详细解释。...因此,与面向的数据库相比,聚合查询消耗的时间更少。 Parquet 能够支持高级嵌套数据结构,并支持高效的压缩选项和编码方案。...PysparkDataFrame 写入 Parquet 文件格式 现在通过调用DataFrameWriter类的parquet()函数从PySpark DataFrame创建一个parquet文件

    1K40

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(下)

    MEMORY_AND_DISK_2` `DISK_ONLY_2` 三、共享变量 1.广播变量(只读共享变量) i 广播变量 ( broadcast variable) ii 创建广播变量 2.累加器变量(可更新的共享变量...) 系列文章目录: ---- 前言 本篇主要讲述了如何在执行pyspark任务时候缓存或者共享变量,以达到节约资源、计算量、时间等目的 一、PySpark RDD 持久化 参考文献:https...;     那么如果我们的流程图中有多个分支,比如某一个转换操作 X 的中间结果,被后续的多个并列的流程图(a,b,c)运用,那么就会出现这么一个情况:     在执行后续的(a,b,c)不同流程的时候...当没有足够的可用内存时,它不会保存某些分区的 DataFrame,这些将在需要时重新计算。这需要更多的存储空间,但运行速度更快,因为从内存中读取需要很少的 CPU 周期。.../pyspark-broadcast-variables/ 2.累加器变量(可更新的共享变量) 累加器是另一种类型的共享变量,仅通过关联和交换操作“添加” ,用于执行计数器(类似于 Map-reduce

    2K40

    Pyspark学习笔记(四)弹性分布式数据集 RDD(下)

    ) ---- 前言 本篇主要讲述了如何在执行pyspark任务时候缓存或者共享变量,以达到节约资源、计算量、时间等目的 一、PySpark RDD 持久化 参考文献:https://sparkbyexamples.com.../pyspark-rdd#rdd-persistence     我们在上一篇博客提到,RDD 的转化操作是惰性的,要等到后面执行行动操作的时候,才会真正执行计算;     那么如果我们的流程图中有多个分支...,比如某一个转换操作 X 的中间结果,被后续的多个并列的流程图(a,b,c)运用,那么就会出现这么一个情况:     在执行后续的(a,b,c)不同流程的时候,遇到行动操作时,会重新从头计算整个图,即该转换操作...当没有足够的可用内存时,它不会保存某些分区的 DataFrame,这些将在需要时重新计算。这需要更多的存储空间,但运行速度更快,因为从内存中读取需要很少的 CPU 周期。.../pyspark-broadcast-variables/ 2.累加器变量(可更新的共享变量) 累加器是另一种类型的共享变量,仅通过关联和交换操作“添加” ,用于执行计数器(类似于 Map-reduce

    2.7K30

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...应用 DataFrame 转换 从 JSON 文件创建 PySpark DataFrame 后,可以应用 DataFrame 支持的所有转换和操作。...将 PySpark DataFrame 写入 JSON 文件 在 DataFrame 上使用 PySpark DataFrameWriter 对象 write 方法写入 JSON 文件。... nullValue,dateFormat PySpark 保存模式 PySpark DataFrameWriter 还有一个方法 mode() 来指定 SaveMode;此方法的参数采用overwrite

    1K20

    PySpark 读写 CSV 文件到 DataFrame

    本文中,云朵君将和大家一起学习如何将 CSV 文件、多个 CSV 文件和本地文件夹中的所有文件读取到 PySpark DataFrame 中,使用多个选项来更改默认行为并使用不同的保存选项将 CSV 文件写回...PySpark 在 DataFrameReader 上提供了csv("path")将 CSV 文件读入 PySpark DataFrame 并保存或写入 CSV 文件的功能dataframeObj.write.csv...("path"),在本文中,云朵君将和大家一起学习如何将本地目录中的单个文件、多个文件、所有文件读入 DataFrame,应用一些转换,最后使用 PySpark 示例将 DataFrame 写回 CSV...注意: 开箱即用的 PySpark 支持将 CSV、JSON 和更多文件格式的文件读取到 PySpark DataFrame 中。...将 DataFrame 写入 CSV 文件 使用PySpark DataFrameWriter 对象的write()方法将 PySpark DataFrame 写入 CSV 文件。

    97920

    如何使用Apache Spark MLlib预测电信客户流失

    该仓库还包含一个脚本,显示如何在CDH群集上启动具有所需依赖关系的IPython笔记本。...该数据集仅包含5,000个观察者,即订阅者,比Spark能够处理的要小很多个数量级,但使用这种大小的数据可以轻松地在笔记本电脑上试用这些工具。...要将这些数据加载到Spark DataFrame中,我们只需告诉Spark每个字段的类型。...在我们的例子中,我们会将输入数据中用字符串表示的类型变量,intl_plan转化为数字,并index(索引)它们。 我们将会选择列的一个子集。...我们只用我们的测试集对模型进行评估,以避免模型评估指标(AUROC)过于乐观,以及帮助我​​们避免过度拟合。

    4K10
    领券