一、元组常用操作 1、使用下标索引取出元组中的元素 - [下标索引] 使用下标索引取出 元组 tuple 中的元素 的方式 , 与 列表 List 相同 , 也是将 下标索引 写到中括号中 访问指定位置的元素..., 语法如下 : 元素变量 = 元组变量[下标索引] 如果是嵌套元组 , 则使用两个 中括号 进行访问 ; 元素变量 = 元组变量[下标索引1][下标索引2] 代码示例 : """ 元组 tuple...常用操作 代码示例 """ # 定义元组字面量 t0 = ("Tom", "Jerry", 18, False, 3.1415926) # 打印元组中索引值为 1 的元素 print(t0[1])...# 输出: Jerry # 定义元组变量 t1 = (("Tom", 18), ("Jerry", 16)) # 打印 嵌套元组 中的元素 print(t1[1][1]) # 输出: 16 执行结果...t0.count("Tom") # 打印查询结果 print(count) 执行结果 : 2 4、统计元组中元素的个数 - len 函数 调用 len(元组变量) 函数 , 可以统计 元组 所有元素
一、Pandas的数据变换高级函数 ----------------- 在数据处理过程中,经常需要对DataFrame进行逐行、逐列和逐元素的操作(例如,机器学习中的特征工程阶段)。...,我们不会使用for循环(效率很低),我们会使用Series.map()来完成,通过简单的一行代码即可完成变换处理。...掌握DataFrame的apply方法需要先了解一下axis的概念,在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。...[a200e4689da469674cc96536057dd442.png] 我们来通过例子理解一下这个方法的使用。例如,我们对data中的数值列分别进行取对数和求和的操作。...对每个Series执行结果后,会将结果整合在一起返回(若想有返回值,定义函数时需要return相应的值) 当然,DataFrame的apply和Series的apply一样,也能接收更复杂的函数,如传入参数等
for 循环遍历每一行/列 使用 for 循环可以遍历 DataFrame 中的每一行或每一列。需要使用 iterrows() 方法遍历每一行,或者使用 iteritems() 方法遍历每一列。...() 方法 apply() 方法可以应用一个函数到 DataFrame 中的每一个元素,返回一个新的 DataFrame。...它返回一个迭代器,其中每个元素都是一个元组,元组中包含列标签和对应列的 Pandas Series。...返回的每个命名元组都代表 DataFrame 中的一行。这种方法比 iterrows() 更快。...Pandas DataFrame,应该尽量避免使用循环遍历,而是使用 Pandas 内置的方法,如 apply() 和 applymap() 等。
今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...我们可以利用apply方法很容易地实现这一点,apply方法有些像是Python原生的map方法,可以对DataFrame当中的每一个元素做一个映射计算。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。...最后我们来介绍一下applymap,它是元素级的map,我们可以用它来操作DataFrame中的每一个元素。比如我们可以用它来转换DataFrame当中数据的格式。 ?...这里要注意,如果将上面代码中的applymap改成apply是会报错的。报错的原因也很简单,因为apply方法的作用域不是元素而是Series,Series并不支持这样的操作。
注意一点,只是调用 groupby 方法,没有进行任何的处理,只返回一个迭代器。 行21,只有当你需要数据时,才会真正执行分组的运算 返回结果是一个元组(key,每个组的记录的DataFrame)。...在pandas中,为我们提供了一些聚合方法用于处理组数据。 apply apply 只是一种对每个分组进行处理的通用方式。来看看流程动图: apply 方法中传入一个用于处理的方法。...apply 会把每个分组以一个DataFrame的形式,传入处理方法的首个参数中。...因此,为什么很多文章说,apply 不能使用 python 内置函数,实际是 python 内置函数不能处理 DataFrame 而已。...apply 在处理的最后一步,把每个分组的处理结果合并成一个 DataFrame 返回。 ---- apply 中还可以传入自定义函数,比如我们希望用 value 减去 age 。
Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。....png] 转换成列表的形式后,可以看到,列表由三个元组组成,每个元组中: 第一个元素是组别(这里是按照company进行分组,所以最后分为了A,B,C) 第二个元素的是对应组别下的DataFrame...groupby之后可以进行下一步操作,注意,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。 下面我们一起看看groupby之后的常见操作。...2.2 agg 聚合操作 聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。...transform:会对每一条数据求得相应的结果,同一组内的样本会有相同的值,组内求完均值后会按照原索引的顺序返回结果 2.4 apply方法 之前我们介绍过对Dataframe使用apply进行灵活数据变换操作处理的方法
其实for和in是两个独立的语法,for语句是Python内置的迭代器工具,用于从可迭代容器对象(如列表、元组、字典、字符串、集合、文件等)中逐个读取元素,直到容器中没有更多元素为止,工具和对象之间只要遵循可迭代协议即可进行迭代操作...in的存在使得python在操作可迭代对象时变得简单得多,用于配合for使用逐个取可迭代对象的元素。...遍历全部交易日的收盘价数值和Ma20数值,将收盘价数值减去Ma20数值,并使用np.sign()取差值符号,当收盘价在Ma20上方时差值为正,收盘价在Ma20上下方时差值为负,由负转正对应为买点,由正转负对应为卖点...()循环方式 apply()方法可将函数应用于dataframe特定行或列。...,由于本例的矢量化运算中只使用了series的数值,无需使用索引等信息,因此可将series转换为array类型,节省操作过程中的很多开销。
1-D 数组: 数组中的随机元素。 int: 来自间隔 (-width_shift_range, +width_shift_range) 之间的整数个像素。...1-D array-like: 数组中的随机元素。 int: 来自间隔 (-height_shift_range, +height_shift_range) 之间的整数个像素。...秩为 4 的 Numpy 矩阵或元组。如果是元组,第一个元素应该包含图像,第二个元素是另一个 Numpy 数组或一列 Numpy 数组,它们不经过任何修改就传递给输出。...directory: 字符串,目标目录的路径,其中包含在 dataframe 中映射的所有图像。 x_col: 字符串,dataframe 中包含目标图像文件夹的目录的列。...任何在子目录树下的 PNG, JPG, BMP, PPM 或 TIF 图像,都将被包含在生成器中。 target_size: 整数元组 (height, width),默认:(256, 256)。
在Python中,我们可以使用map()函数对list对象中的每一个元素进行循环迭代操作,例如: In [1]: a = [i for i in range(10)] In [2]: a Out[2]...当时是有的,这篇笔记来汇总下自己了解的几种方法。 apply() 在Pandas中,无论是矩阵(DataFrame)或者是向量(Series)对象都是有apply()方法的。...对DataFrame对象使用该方法的话就是对矩阵中的每一行或者每一列进行遍历操作(通过axis参数来确定是行遍历还是列遍历);对Series对象使用该方法的话,就是对Series中的每一个元素进行循环遍历操作...对DataFrame对象使用apply()方法: In [4]: import pandas as pd In [5]: df = pd.DataFrame({'a': [10, 20, 30], '...iteritems()列迭代每次取出的i是一个元组,在元组中,第[0]项是原来的列名称,第[1]列是由原来该列的元素构成的一个Series: In [20]: for i in df.iteritems
譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...可以看到,这里返回的是单列结果,每个元素是返回值组成的元组,这时若想直接得到各列分开的结果,需要用到zip(*zipped)来解开元组序列,从而得到分离的多列返回值: a, b = zip(*data.apply...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组。...) 可以看到,这里返回的是单列结果,每个元素是返回值组成的元组,这时若想直接得到各列分开的结果,需要用到zip(*zipped)来解开元组序列,从而得到分离的多列返回值: a, b = zip(*data.apply...#利用列表解析提取分组结果 groups = [group for group in groups] 查看其中的一个元素: 可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式...,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。
假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...('Number of Students') plt.title('Gender Distribution') plt.show() 同样地,我们还可以使用其他类型的图表来展示数据,如折线图、散点图等。...,元组的第一个元素将会是由键值组成的元组: for (k1,k2),group in df.groupby(['key1','key2']): print((k1,k2)) print(...如果不想接收GroupBy自动给出的那些列名,那么如果传入的是一个由(name,function)元组组成的列表,则各元组的第一个元素就会用作DataFrame的列名(可以将这种二元元组列表看做一个有序映射...于是,最终结果就有了一个层次化索引,其内层索引值来自原DataFrame。 【例14】在apply函数中设置其他参数和关键字。
转数值等,下面使用 pandas 解决这些最常见的预处理任务。...找出异常值常用两种方法: 标准差法:异常值平均值上下1.96个标准差区间以外的值 分位数法:小于 1/4分位数减去 1/4和3/4分位数差的1.5倍,大于3/4减去 1/4和3/4分位数差的1.5倍,都为异常值...,如平均数、众数、中位数等,使用函数 fillna: # 使用a列平均数填充列的空值,inplace true表示就地填充 df["a"].fillna(df["a"].mean(), inplace=...:最后一次出现此值行: df.drop_duplicates(['Names'], keep='last') 技能7:apply 元素级:去掉特殊字符 某列单元格含有特殊字符,如标点符号,使用元素级操作方法...95 if x=='B': return 80 df['a'].apply(c2n) 以上结合数据预处理的十个小任务,分别找到对应pandas中的实现。
[2, 3]), ('C', [4, 5, 6])]) 将这个内部是元组的可迭代对象传入DataFrame的构造函数中: pd.DataFrame(mydict.items()) 返回结果: ?...这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...例如:product(A, B) 中的元素A和B将共同构成可迭代元素[A, B]作为iterables传入和 ((x,y) for x in A for y in B) 返回结果一样。...---- 列表的extend方法是将可迭代对象的每个元素都添加到列表中,而append方法只能添加单个元素。...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。
在 SQL 中,可以使用聚合函数来计算数据的总和、平均值和数量。以下是一些常用的聚合函数的示例: SUM 函数:计算指定列的总和。...SELECT SUM(column_name) FROM table_name; AVG 函数:计算指定列的平均值。...SELECT AVG(column_name) FROM table_name; COUNT 函数:计算指定列的数量。...SELECT MIN(column_name) FROM table_name; MAX 函数:返回指定列的最大值。...SELECT MAX(column_name) FROM table_name; 注意:这些聚合函数可以与其他 SQL 查询语句一起使用,例如 WHERE 子句来过滤数据,或者 GROUP BY 子句来分组计算
MSBuild 中写在 中的每一项是一个 Item,Item 除了可以使用 Include/Update/Remove 来增删之外,还可以定义其他的元数据(Metadata)...使用 % 可以引用 Item 的元数据,本文将介绍如何正确使用 % 来引用每一个项中的元数据。...---- 定义 Item 的元数据 就像下面这样,当引用一个 NuGet 包时,可以额外使用 Version 来指定应该使用哪个特定版本的 NuGet 包。...为了简单说明 % 的用法,我将已收集到的所有的元数据和它的本体一起输出到一个文件中。这样,后续的编译过程可以直接使用这个文件来获得所有的项和你希望关心它的所有元数据。...; 执行工具程序,这个程序将使用这个文件来执行自定义的编译。
本文中介绍了pandas中的三大利器:map、apply、applymap来解决上述的需求。 ? 模拟数据 通过一个模拟的数据来说明3个函数的使用,在这个例子中学会了如何生成各种模拟数据。...# 学会使用random模块中的randint方法 df = pd.DataFrame({"height":np.random.randint(160,190,100),...pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。...在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。...apply方法中传进来的第一个参数一定是函数 ? applymap DF数据加1 applymap函数用于对DF型数据中的每个元素执行相同的函数操作,比如下面的加1: ? 保留2位有效数字 ?
Series、Numpy中的一维Array、Python基本数据结构List区别:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,...如:Concat、Merge (类似于SQL类型的合并)、Append (将一行连接到一个DataFrame上)。...(元素级数组方法) DataFrame的apply方法 对象的applymap方法(因为Series有一个应用于元素级的map方法) # -*- coding: utf-8 -*- import numpy...print(frame.apply(f)) #行的最大值减去最小值 print(frame.apply(f, axis = 1)) def f(x): return Series([x.min...,它在修正数据,用一个DataFrame来填补前面的DataFrame中NAN的数据 Merge, join, and concatenate官方文档说明:http://pandas.pydata.org
拿 pandas 举例子,当创建了一个 DataFrame 后,无论行和列上数据都是有顺序的,因此,在行和列上都可以使用位置来选择数据。...丰富的 API DataFrame 的 API 非常丰富,横跨关系(如 filter、join)、线性代数(如 transpose、dot)以及类似电子表格(如 pivot)的操作。...因此我们可以索引保持不变,整体下移一行,这样,昨天的数据就到了今天的行上,然后拿原数据减去位移后的数据时,因为 DataFrame 会自动按标签做对齐,因此,对于一个日期,相当于用当天的数据减去了前天的数据...或者 cuDF DataFrame 来存储数据和执行真正的计算。...Mars 还包含 tensor 模块来支持并行和分布式化 numpy,以及 learn 模块来并行和分布式化 scikit-learn,因此可以想象,如 mars.tensor.linalg.svd
('Number of Students') plt.title('Gender Distribution') plt.show() 同样地,我们还可以使用其他类型的图表来展示数据,如折线图、散点图等。...,元组的第一个元素将会是由键值组成的元组: for (k1,k2),group in df.groupby(['key1','key2']): print((k1,k2)) print(...max():计算每个分组中的所有值的最大值。 std():计算每个分组中的所有值的标准差。 var():计算每个分组中的所有值的方差。 size():计算每个分组中的元素数量。...如果不想接收GroupBy自动给出的那些列名,那么如果传入的是一个由(name,function)元组组成的列表,则各元组的第一个元素就会用作DataFrame的列名(可以将这种二元元组列表看做一个有序映射...于是,最终结果就有了一个层次化索引,其内层索引值来自原DataFrame。 示例二 【例14】在apply函数中设置其他参数和关键字。
领取专属 10元无门槛券
手把手带您无忧上云