首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PHP实现广度优先搜索算法(BFS,Broad First Search)详解

    本文实例讲述了PHP实现广度优先搜索算法。分享给大家供大家参考,具体如下: 广度优先搜索的算法思想 Breadth-FirstTraversal 广度优先遍历是连通图的一种遍历策略。因为它的思想是从一个顶点V0开始,辐射状地优先遍历其周围较广的区域,故得名。 广度优先搜索遍历类似于树的按层次遍历。对于无向连通图,广度优先搜索是从图的某个顶点v0出发,在访问v0之后,依次搜索访问v0的各个未被访问过的邻接点w1,w2,…。然后顺序搜索访问w1的各未被访问过的邻接点,w2的各未被访问过的邻接点,…。即从v0开始,由近至远,按层次依次访问与v0有路径相通且路径长度分别为1,2,…的顶点,直至连通图中所有顶点都被访问一次。 只要按一定的次序访问各层顶点,方便程序实现,广度优先搜索的整体层次顺序一定,各层访问顺序不是唯一的。 具体描述如下: 设图G的初态是所有顶点均未访问,在G 中任选一顶点i作为初始点,则广度优先搜索的基本思想是: (1)从图中的某个顶点V出发访问并记录。 (2)依次访问V的所有邻接顶点; (3)分别从这些邻接点出发,依次访问它们的未被访问过的邻接点,直到图中所有已被访问过的顶点的邻接点都被访问到。 (4)第(3)步。 依此类推,直到图中所有顶点都被访问完为止 。 广度优先搜索在搜索访问一层时,需要记住已被访问的顶点,以便在访问下层顶点时,从已被访问的顶点出发搜索访问其邻接点。所以在广度优先搜索中需要设置一个队列Queue,使已被访问的顶点顺序由队尾进入队列。在搜索访问下层顶点时,先从队首取出一个已被访问的上层顶点,再从该顶点出发搜索访问它的各个邻接点。 SearchInterface.php:

    03

    八数码问题及A*算法

    一.八数码问题 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。棋子移动后,状态就会发生改变。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 八数码问题一般使用搜索法来解。 搜索法有广度优先搜索法、深度优先搜索法、A*算法等。这里通过用不同方法解八数码问题来比较一下不同搜索法的效果。

    02

    数据结构与算法: 三十张图弄懂「图的两种遍历方式」

    遍历是指从某个节点出发,按照一定的的搜索路线,依次访问对数据结构中的全部节点,且每个节点仅访问一次。   在二叉树基础中,介绍了对于树的遍历。树的遍历是指从根节点出发,按照一定的访问规则,依次访问树的每个节点信息。树的遍历过程,根据访问规则的不同主要分为四种遍历方式:   (1)先序遍历   (2)中序遍历   (3)后序遍历   (4)层次遍历   类似的,图的遍历是指,从给定图中任意指定的顶点(称为初始点)出发,按照某种搜索方法沿着图的边访问图中的所有顶点,使每个顶点仅被访问一次,这个过程称为图的遍历。遍历过程中得到的顶点序列称为图遍历序列。   图的遍历过程中,根据搜索方法的不同,又可以划分为两种搜索策略:   (1)深度优先搜索(DFS,Depth First Search)   (2)广度优先搜索(BFS,Breadth First Search)

    02

    算法与数据结构(四) 图的物理存储结构与深搜、广搜(Swift版)

    开门见山,本篇博客就介绍图相关的东西。图其实就是树结构的升级版。上篇博客我们聊了树的一种,在后边的博客中我们还会介绍其他类型的树,比如红黑树,B树等等,以及这些树结构的应用。本篇博客我们就讲图的存储结构以及图的搜索,这两者算是图结构的基础。下篇博客会在此基础上聊一下最小生成树的Prim算法以及克鲁斯卡尔算法,然后在聊聊图的最短路径、拓扑排序、关键路径等等。废话少说开始今天的内容。 一、概述 在博客开头,我们先聊一下什么是图。在此我不想在这儿论述图的定义,当然那些是枯燥无味的。图在我们生活中无处不在呢,各种地

    010

    二叉树——104. 二叉树的最大深度

    方法一:深度优先搜索 如果我们知道了左子树和右子树的最大深度Ⅰ和r,那么该二叉树的最大深度即为 max(l, r)+1 而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在O(1)时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。 复杂度分析 时间复杂度:O(n),其中n为二叉树节点的个数。每个节点在递归中只被遍历一次。 空间复杂度:O(height),其中height表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。 方法二:广度优先搜索 我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行—些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量ans来维护拓展的次数,该二叉树的最大深度即为ans。 复杂度分析 ·时间复杂度:O(n),其中n为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。 ·空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到O(n)。

    02

    深度优先搜索遍历与广度优先搜索遍历

    1、图的遍历      和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。      深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。   注意:     以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置      图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义      假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。      图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程      设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。 3、深度优先遍历的递归算法 (1)深度优先遍历算法   typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1   Boolean visited[MaxVertexNum]; //访问标志向量是全局量   void DFSTraverse(ALGraph *G)   { //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同     int i;     for(i=0;i<G->n;i++)       visited[i]=FALSE; //标志向量初始化     for(i=0;i<G->n;i++)       if(!visited[i]) //vi未访问过         DFS(G,i); //以vi为源点开始DFS搜索    }//DFSTraverse (2)邻接表表示的深度优先搜索算法   void DFS(ALGraph *G,int i){     //以vi为出发点对邻接表表示的图G进行深度优先搜索     EdgeNode *p;     printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi     visited[i]=TRUE; //标记vi已访问     p=G->adjlist[i].firstedge; //取vi边表的头指针     while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex       if (!visited[p->adjvex])//若vi尚未被访问         DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索       p=p->next; //找vi的下一邻接点      }    }//DFS (3)邻接矩阵表示的深度优先搜索算法   void DFSM(MGraph *G,int i)   { //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵     int j;     printf("visit vertex:%c",G->vexs[i]);//访问顶点vi     visited[i]=TRUE;     for(j=0;j<G->n;j++) //依次搜索vi的邻接点       if(G->edges[i][j]==1&&!vi

    05
    领券