ROC曲线
对于0,1两类分类问题,一些分类器得到的结果往往不是0,1这样的标签,如神经网络,得到诸如0.5,0,8这样的分类结果。...还有在类不平衡的情况下,如正样本90个,负样本10个,直接把所有样本分类为正样本,得到识别率为90%。但这显然是没有意义的。
如上就是ROC曲线的动机。...现在我们需要一个独立于阈值的评价指标来衡量这个医生的医术如何,也就是遍历所有的阈值,得到ROC曲线。
还是一开始的那幅图,假设如下就是某个医生的诊断统计图,直线代表阈值。...我们遍历所有的阈值,能够在ROC平面上得到如下的ROC曲线。
曲线距离左上角越近,证明分类器效果越好。
如上,是三条ROC曲线,在0.23处取一条直线。...MATLAB实现
MATLAB自带plotroc()方法,绘制ROC曲线,参数如下:
plotroc(targets,outputs);
第一个参数为测试样本的原始标签,第二个参数为分类后得到的标签。