首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何借助ARcore相对于一个锚点定位锚点/节点/锚节点?

ARCore是由Google开发的增强现实(AR)平台,它可以在支持AR功能的智能手机上创建虚拟现实体验。在ARCore中,锚点是用于在现实世界中定位和跟踪虚拟对象的关键元素。相对于一个锚点定位锚点/节点/锚节点的过程如下:

  1. 初始化ARCore:在使用ARCore之前,需要在应用程序中初始化ARCore引擎。这可以通过调用ARCore SDK提供的初始化函数来完成。
  2. 检测平面:ARCore可以通过分析手机摄像头捕捉到的图像来检测水平平面,例如地面或桌面。这些平面可以作为锚点的位置参考。
  3. 创建锚点:一旦检测到平面,可以使用ARCore创建锚点。锚点是虚拟对象在现实世界中的位置和方向的表示。可以通过在平面上点击或触摸屏幕来创建锚点。
  4. 定位锚点:一旦创建了锚点,ARCore会使用手机的摄像头和传感器来跟踪锚点的位置和方向。这样,虚拟对象就可以相对于锚点进行定位。
  5. 更新锚点:由于手机的位置和方向会不断变化,ARCore会持续更新锚点的位置和方向信息,以确保虚拟对象与现实世界保持一致。

借助ARCore相对于一个锚点定位锚点/节点/锚节点的优势包括:

  1. 精准定位:ARCore使用先进的计算机视觉和传感器技术,可以实现对锚点的高精度定位,使虚拟对象与现实世界的对应更加准确。
  2. 实时跟踪:ARCore能够实时跟踪锚点的位置和方向,使得虚拟对象可以与用户的移动保持同步,提供更加流畅的增强现实体验。
  3. 多平台支持:ARCore支持多种Android设备,使得开发者可以在广泛的手机上实现相对于锚点的定位,扩大了应用的覆盖范围。
  4. 丰富的应用场景:借助ARCore,可以实现各种创新的增强现实应用,例如虚拟家具展示、室内导航、虚拟游戏等。

腾讯云提供了一系列与AR相关的产品和服务,其中包括:

  1. 腾讯云AR开放平台:提供了AR开发所需的SDK和API,支持开发者在腾讯云上构建AR应用。
  2. 腾讯云AR云服务:提供了基于云端的AR图像识别、跟踪和渲染服务,帮助开发者实现更复杂的AR功能。
  3. 腾讯云AR云编辑器:提供了可视化的AR场景编辑工具,使开发者可以轻松创建和编辑AR场景。

更多关于腾讯云AR相关产品和服务的详细信息,可以访问腾讯云官方网站:腾讯云AR产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 室内定位中非视距的识别和抑制算法研究综述(部分)

    针对存在非视距(non-line-of-sight, NLOS)的室内定位算法进行研究. 首先描述室内定位中的常用技术和算法(航迹推算、指纹识别定位、邻近探测、极点定位、三角定位、多边定位、质心定位), 概括其原理、优缺点和适用场景; 其次, 通过仿真测试说明研究NLOS识别和抑制的必要性; 再次, 分别介绍NLOS识别和NLOS抑制的几类算法, NLOS识别算法包括统计学方法、几何关系法、机器学习法、信道特征提取法和虚点密度识别法, NLOS抑制算法包括模糊理论法、引入平衡参数法、几何关系法、小波去噪法、机器学习类算法、凸优化类算法、残差类算法、最小二乘类算法和多维缩放类算法; 最后, 对全文进行总结并指出NLOS室内定位亟待解决的问题.

    02

    Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

    任意方向的目标广泛出现在自然场景、航拍照片、遥感图像等,任意方向的目标检测受到了广泛的关注。目前许多旋转检测器使用大量不同方向的锚点来实现与ground truth框的空间对齐。然后应用交叉-联合(IoU)方法对正面和负面的候选样本进行训练。但是我们观察到,选择的正锚点回归后并不能总是保证准确的检测,而一些阴性样本可以实现准确的定位。这说明通过IoU对锚的质量进行评估是不恰当的,进而导致分类置信度与定位精度不一致。本文提出了一种动态锚学习(DAL)方法,利用新定义的匹配度综合评价锚的定位潜力,进行更有效的标签分配过程。这样,检测器可以动态选择高质量的锚点,实现对目标的准确检测,缓解分类与回归的分歧。在新引入的DAL中,我们只需要少量的水平锚点就可以实现对任意方向目标的优越检测性能。在三个遥感数据集HRSC2016、DOTA、UCAS-AOD以及一个场景文本数据集ICDAR 2015上的实验结果表明,与基线模型相比,我们的方法取得了实质性的改进。此外,我们的方法对于使用水平边界盒的目标检测也是通用的。

    01

    Single-Shot Refinement Neural Network for Object Detection

    对于目标检测,两阶段方法(如Faster R-CNN)的准确率最高,而单阶段方法(如SSD)的效率较高。为了在继承两种方法优点的同时克服它们的缺点,本文提出了一种新的单阶段检测器,称为RefineDet,它比两阶段方法具有更好的精度,并保持了与单阶段方法相当的效率。RefineDet由两个相互连接的模块组成,即锚点细化模块和目标检测模块。具体来说,前者的目的是(1)过滤掉负锚点,减少分类器的搜索空间,(2)粗调锚点的位置和大小,为后续回归器提供更好的初始化。后一个模块以改进后的锚为输入,进一步改进回归,预测多类标签。同时,我们设计了一个传输连接块来传输锚点细化模块中的特征,以预测目标检测模块中目标的位置、大小和类标签。多任务丢失功能使我们能够以端到端方式训练整个网络。在PASCAL VOC 2007、PASCAL VOC 2012和MS COCO上的大量实验表明,RefineDet能够以高效的方式实现最先进的检测精度。

    01

    室内定位中非视距的识别和抑制算法研究综述

    针对存在非视距(non-line-of-sight, NLOS)的室内定位算法进行研究. 首先描述室内定位中的常用技术和算法(航迹推算、指纹识别定位、邻近探测、极点定位、三角定位、多边定位、质心定位), 概括其原理、优缺点和适用场景; 其次, 通过仿真测试说明研究NLOS识别和抑制的必要性; 再次, 分别介绍NLOS识别和NLOS抑制的几类算法, NLOS识别算法包括统计学方法、几何关系法、机器学习法、信道特征提取法和虚点密度识别法, NLOS抑制算法包括模糊理论法、引入平衡参数法、几何关系法、小波去噪法、机器学习类算法、凸优化类算法、残差类算法、最小二乘类算法和多维缩放类算法; 最后, 对全文进行总结并指出NLOS室内定位亟待解决的问题. 全球定位系统(global positioning system, GPS), 凭借其广泛的应用范围和较高的定位精度, 受到了各方面专家和学者的青睐, 其在室外可以提供比较可靠的定位服务. 然而, 由于室内环境较为复杂, 信号的传播过程中会遇到障碍物(行人、墙壁、桌椅等)的阻塞, 使得信号发生反射、折射或散射, 导致强度减弱, GPS并不能实现精确的定位, 即在存在非视距(non-line-of-sight, NLOS)的室内环境中, 定位精度会有所下降. 如何有效识别和抑制NLOS, 从而提高定位精度是目前室内定位研究的热点问题之一. 室内定位作为定位技术在室内环境的延续, 应用更加广泛. 精确的节点位置信息可以应用在环境监测、军事侦察、定位打击目标、公共安全及应急响应等方面.

    03

    FCOS: Fully Convolutional One-Stage Object Detection

    我们提出一种全卷积的单阶段目标检测器(FCOS),以逐像素预测的方式解决目标检测问题,类似于语义分割。几乎所有最先进的目标探测器,如RetinaNet、SSD、YOLOv3和Faster R-CNN,都依赖于预定义的锚盒。相比之下,我们提出的探测器FCOS是Anchor Free,以及proposal自由。通过消除预定义的锚盒集合,FCOS完全避免了与锚盒相关的复杂计算,例如在训练过程中计算IoU。更重要的是,我们还避免了所有与锚盒相关的超参数,这些超参数通常对最终检测性能非常敏感。通过唯一的后处理非最大抑制(NMS),使用ResNeXt-64x4d-101的FCOS在单模型和单尺度测试下,AP达到44.7%,超越了以往单阶段检测器。我们首次演示了一个更简单、更灵活的检测框架,从而提高了检测精度。我们希望所提出的FCOS框架可以作为许多其他实例级任务的简单而强大的替代方案。

    02

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet和Faster R-CNN等技术的进步,降低了检测网络的运行时间,但是暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的目标边界和目标得分。对RPN进行端到端训练,生成高质量的区域建议,Faster R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Faster R-CNN合并成一个单独的网络——使用最近流行的具有“Attention”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号,我们的检测系统在GPU上帧率为5帧(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个proposal。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。

    02

    ManiFest: manifold deformationfor few-shot image translation

    大多数图像到图像的翻译方法都需要大量的训练图像,这限制了它们的适用性。相反,我们提出了ManiFest:一个用于少样本图像翻译的框架,它只从少数图像中学习目标域的上下文感知表示。为了增强特征一致性,我们的框架学习源域和附加锚域(假设由大量图像组成)之间的风格流形。通过基于patch的对抗性和特征统计对准损失,将学习到的流形插值并朝着少样本目标域变形。所有这些组件都是在单个端到端循环中同时训练的。除了一般的少样本翻译任务外,我们的方法还可以以单个样例图像为条件来再现其特定风格。大量实验证明了ManiFest在多项任务上的有效性,在所有指标上都优于最先进的技术。

    02

    Feature Selective Anchor-Free Module for Single-Shot Object Detection

    提出了一种简单有效的单阶段目标检测模块——特征选择无锚定(FSAF)模块。它可以插入到具有特征金字塔结构的单阶段检测器中。FSAF模块解决了传统基于锚点检测的两个局限性:1)启发式引导的特征选择;2)基于覆盖锚取样。FSAF模块的总体思想是将在线特征选择应用于多水平无锚分支的训练。具体来说,一个无锚的分支被附加到特征金字塔的每一层,允许在任意一层以无锚的方式进行盒编码和解码。在训练过程中,我们动态地将每个实例分配到最合适的特性级别。在推理时,FSAF模块可以通过并行输出预测与基于锚的分支联合工作。我们用无锚分支的简单实现和在线特性选择策略来实例化这个概念。在COCO检测轨道上的实验结果表明,我们的FSAF模块性能优于基于锚固的同类模块,而且速度更快。当与基于锚点的分支联合工作时,FSAF模块在各种设置下显著地改进了基线视网膜网,同时引入了几乎自由的推理开销。由此产生的最佳模型可以实现最先进的44.6%的映射,超过现有的COCO单单阶段检测器。

    02

    html 锚点定位偏移 外边距增加

    锚点样式

    相关内容HTML中a标签锚点定位偏移(距离定位顶部一段位移)百度未收录

    01

    《移动互联网技术》第三章 无线定位技术:掌握位置服务和室内定位的基本概念和工作原理

    《移动互联网技术》课程是软件工程、电子信息等专业的专业课,主要介绍移动互联网系统及应用开发技术。课程内容主要包括移动互联网概述、无线网络技术、无线定位技术、Android应用开发和移动应用项目实践等五个部分。移动互联网概述主要介绍移动互联网的概况和发展,以及移动计算的特点。无线网络技术部分主要介绍移动通信网络(包括2G/3G/4G/5G技术)、无线传感器网络、Ad hoc网络、各种移动通信协议,以及移动IP技术。无线定位技术部分主要介绍无线定位的基本原理、定位方法、定位业务、数据采集等相关技术。Android应用开发部分主要介绍移动应用的开发环境、应用开发框架和各种功能组件以及常用的开发工具。移动应用项目实践部分主要介绍移动应用开发过程、移动应用客户端开发、以及应用开发实例。 课程的教学培养目标如下: 1.培养学生综合运用多门课程知识以解决工程领域问题的能力,能够理解各种移动通信方法,完成移动定位算法的设计。 2.培养学生移动应用编程能力,能够编写Andorid应用的主要功能模块,并掌握移动应用的开发流程。 3. 培养工程实践能力和创新能力。  通过本课程的学习应达到以下目的: 1.掌握移动互联网的基本概念和原理; 2.掌握移动应用系统的设计原则; 3.掌握Android应用软件的基本编程方法; 4.能正确使用常用的移动应用开发工具和测试工具。

    01

    AAAI'22 | "简单"的无监督图表示学习

    今天给大家介绍的是电子科技大学石小爽教授团队于2022年发表在AAAI上的一篇论文:“Simple Unsupervised Graph Representation Learning ”。作者提出了一种简单的无监督图表示学习方法来进行有效和高效的对比学习。具体而言,通过构造多重损失探索结构信息与邻域信息之间的互补信息来扩大类间变化,并通过增加一个上限损失来实现正嵌入与锚嵌入之间的有限距离来减小类内变化。因此,无论是扩大类间变异还是减少类内变异,都能使泛化误差很小,从而得到一个有效的模型。此外,作者的方法消除了以往图对比学习方法中广泛使用的数据增强和鉴别器,同时可以输出低维嵌入,从而得到一个高效的模型。在各种真实数据集上的实验结果表明,与最先进的方法相比,该方法是有效和高效的。

    01
    领券