1、什么是 shader shader 中文名为着色器,全称为着色器程序,是专门用来渲染图形的一种技术。通过 shader,我们可以自定义显卡渲染画面的算法,使画面达到我们想要的效果。小到每一个像素点,大到整个屏幕。通常来说,程序是运行在 CPU 中的,但是着色器程序比较特殊,它是运行在 GPU 中的,所以当我们在编写 shader 程序的时候,实际上也是在编写 GPU 程序。在 OpenGL 中,对应的着色器语言是 GLSL(OpenGL Shading Language)。通过 shader 编程,我们
对于透明物体的处理,是游戏引擎的一个重要能力,通常通过模型的 透明通道 alpha 来控制物体的透明情况,alpha取值范围为
这是关于渲染的系列教程的第十一部分。之前,我们使着色器能够渲染复杂的材质。但是这些材质一直都是完全不透明的。现在,我们将添加对透明度的支持。
在群里面有人提到了这么一个实现:现有一段素材视频,想要对视频中的某个内容进行替换,换成自己的图片,这个怎么用 OpenGL 去实现呢?
详细解析参照 :OpenGL 分屏滤镜 https://juejin.cn/post/6859934701932118024
Drawable是一种可绘制资源的载体,如图形、图像等。在实际开发中可以作为view的背景。主要有静态和动态两种方式,静态通过xml描述使用,动态即自定义Drawable。本文实现一个圆形和圆角的背景图片效果。
这些代码不需要包含在任何Pass语义块中,在使用时,我们只需要在Pass中直接指定需要使用的顶点着色器和片元着色器函数名即可。CGINCLUDE类似于C++中头文件的功能。由于高斯模糊需要定义两个Pass,但它们使用的片元着色器代码是完全相同的,使用CGINCLUDE可以避免我们编写两个完全一样的frag函数。
这是关于渲染的系列教程的第12部分。在上一部分中,我们实现啦渲染半透明表面,但是尚未覆盖它们的阴影。现在,我们来解决这个问题。
---- 新智元报道 编辑:LRS 【新智元导读】最近谷歌发布了全新的MobileNeRF模型,直接将神经辐射场拉入移动时代,内存需求仅为1/6,渲染3D模型速度提升10倍,手机、浏览器都能用! 2020年,神经辐射场(NeRF)横空出世,只需几张2D的静态图像,即可合成出该模型的3D场景表示,从此改变了3D模型合成的技术格局。 NeRF以一个多层感知器(MLP)来学习表示场景,评估一个5D隐式函数来估计从任何方向、任何位置发出的密度和辐射,可在体渲染(volumic rendering)框架下
本文介绍透明度叠加算法(Alpha Blending Algorithm),并用 C#/WPF 的代码,以及像素着色器的代码 HLSL 来实现它。
把物体的数学描述以及与物体相关的信息转换为屏幕上用于对应位置的像素及用于填充像素的颜色这个过程成为光栅化
这篇文章是使用游戏引擎探索地图可视化的开篇。传统的地图渲染通常是在iOS/Android/Web平台进行的,为了探究更酷炫的地图展示,会记录基于UE4/Unity进行地图渲染的探索过程。
OpenGLES(七)-GLSL案例:纹理颜色混合 首先放出效果 效果图 原图: 原图 通过对比可以看出纹理和颜色进行了混合效果,下面就放出实现过程. vsh attribute vec4 posit
这是有关创建自定义脚本渲染管道的系列教程的第14部分。这次,我们重新考虑了使用多个摄像机的渲染,现在添加了post FX。
今天郭先生说一说three.js的材质。材质描述了对象objects的外观。它们的定义方式与渲染器无关, 因此,如果您决定使用不同的渲染器,不必重写材质。
要绘制物体,CPU需要告诉GPU应该绘制什么和如何绘制。通常我们用Mesh来决定绘制什么。而如何绘制是由着色器控制的,着色器实际上就是一组GPU的指令。除了Mesh之外,着色器还需要很多其他的信息来协同完成它的工作,比如对象的transform矩阵和材质属性等。
流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa
上一篇文章,讲解了如何使用EGL,并且提到EGL可以建立一个离屏渲染的缓冲区,这种离屏渲染的方式通常用于模拟整个渲染窗口,比如可以用于FFmpeg软编码,将显示在虚拟窗口中的画面编码成H264。
ChatGPT 技术最近有多火就不用再介绍了吧,连超级大佬都说了 ChatGPT 这是几百年不遇的、类似发明电的工业革命一样的机遇。
如果要创建一个更加真实的场景,我们就需要模拟光和物体表面的交互。这比我们之前制作的不受光的着色器要复杂的多。
既然是学习音视频技术,那必然少不了渲染这个环节,OpenGL就是进行图形渲染的一个重要角色。
这是关于渲染的系列教程的第16部分。上次,我们渲染了自己的延迟灯光。在这一部分中,我们转到灯光贴图上来。
Shader(着色器)是一种用于在计算机图形学中进行图形渲染的程序。它们是在图形处理单元(GPU)上执行的小型程序,用于控制图形的各个方面,如颜色、光照、纹理映射、投影等。
在Metal / OpenGL ES 框架,只有3种基本图元. 点,线,三角形. 所以在显示一个矩形图片时. 实际在显示本质是由2个三角形组成.
这个公众号会路线图式的遍历分享音视频技术:音视频基础 → 音视频工具 → 音视频工程示例 → 音视频工业实战。关注一下成本不高,错过干货损失不小 ↓↓↓
LightMap:就是指在三维软件⾥实现打好光,然后渲染把场景各表⾯的光照输出到贴图上,最后⼜通过引擎贴到场景上,这样就使物体有了光照的感觉。
本文实例为大家分享了自定义Drawable实现圆形和圆角的具体代码,供大家参考,具体内容如下
偶然间,看到技术交流群里的一位同学在做类似于上图所示的 3D 效果壁纸,乍一看效果确实挺惊艳的。当时看到素材之后,马上就萌生了一个想法:利用 OpenGL 做一个能与之媲美的 3D 效果。
前言 关于iOS的视图渲染流程,以及性能优化的建议。 源于WWDC视频。 我假设你是一个这样的开发者: 了解OpenGL ES; 了解view hierarchy; 了解instruments; view hierarchy和instruments网上资料很多,OpenGL ES的你可以看OpenGL ES文集。 视图渲染 UIKit是常用的框架,显示、动画都通过CoreAnimation。 CoreAnimation是核心动画,依赖于OpenGL ES做GPU渲染,CoreGraphics做CPU渲
本文介绍了Unity引擎在移动游戏开发中的性能优化方案,包括CPU、GPU、内存、渲染、加载等方面的优化。通过优化代码、减少资源、使用LOD系统、避免使用动态对象、及时释放不再使用的资源等方法,可以提高游戏的性能和稳定性。
(温馨提示:本系列知识是循序渐进的,推荐第一次阅读的同学从第一章看起,链接在文章底部)
在顶点、曲面细分和几何着色器执行它们的操作后,图元被裁剪并设置为光栅化,如前一章所述。管线的这一部分在其处理步骤中相对固定,即不可编程但有些可配置。遍历每个三角形以确定它覆盖哪些像素。光栅化器还可以粗略计算三角形覆盖每个像素的单元格区域(第5.4.2节)。与三角形部分或完全重叠的像素区域称为片元。
Xfermode的作用是将绘制的图形的像素和Canvas上对应位置的像素按照一定的规则进行混合,形成新的像素,再更新到Canvas中形成最终的图形,使用的时候都是通过Paint.setXfermode 我们一个像素的颜色都是由四个分量组成,即ARGB,A表示的是我们Alpha值,RGB表示的是颜色 S表示的是原像素,原像素的值表示[Sa,Sc] Sa表示的就是源像素的Alpha值,Sc表示源像素的颜色值 D表示的是目标像素,目标像素的值表示[Da,Dc] Da表示的就是目标像素的Alpha值,Dc表示目标像
对于现代计算机系统,简单来说可以大概视作三层架构:硬件、操作系统与进程。对于移动端来说,进程就是 app,而 CPU 与 GPU 是硬件层面的重要组成部分。CPU 与 GPU 提供了计算能力,通过操作系统被 app 调用。
学习Shader(着色器)必须先要了解渲染管线。如果不了解,那么就不能说你了解Shader
Firefox Quantum 发布在即。它带来了许多性能改进,包括从 Servo 引入的的极速 CSS 引擎。
这是有关创建自定义脚本渲染管线的系列教程的第15部分。我们将基于颜色和深度纹理来创建基于深度的淡入和扭曲粒子。
前言 设计师需求中3D视觉平移到互动H5中的项目越来越多,three.js和PBR工作流的结合却一直没有被系统化地整理。 和各位前端神仙一起做项目,也一起磕磕碰碰出了爱与痛的领悟。小小总结,希望3D去往H5的道路天堑变通途。 本手册主要分为两大部分: Part 1 理论篇:主要让设计师了解计算机到底是如何理解和实时渲染我们设计的3D项目,以及three.js材质和预期材质的对应关系。 Part 2 实践篇:基于three.js的实现性,提供场景、材质贴图的制作思路、以及gltf工作流,并动态讨论项目常
在代码中添加Cull Off关闭渲染图元的剔除功能,这时所有的物体都是正反面双向渲染,得到效果如下
@张风捷特烈 2020.12.08 未允禁转 我的公众号:编程之王 联系我--邮箱:1981462002@qq.com -- 微信: ~ END ~
· 3.3Light Probe Proxy Volumes(LPPVs)
在玩很多flash网页游戏的时候,看到它们都有非常清晰的宋体字,并且有漂亮的描边效果。如图,这是战将传奇的登录界面中的文字。 对比之下,silverlight要弄文字可让人头痛无比,别的不
假设一个工具需要4个步骤才能够完成,那么一个人只能完成了全部的4个步骤后才能继续进行下一个工具的生产。但如果引入另外的3个人,每个人只负责一个步骤,那么一个人只需要完成一个步骤就可以进行下一个工具的生产。
接下来几篇文章我们将稍微简单的探索下PS中多种图层混合模式的算法内部原理,因为毕竟没有这方面的官方资料,所以很多方面也只是本人自己的探索和实践,有可能和实际的情况有着较大的差异。
执行纹理映射的通常方法是使用网格中每个顶点存储的UV坐标。但这不是唯一的方法。有时,没有可用的UV坐标。例如,当使用任意形状的过程几何时。在运行时创建地形或洞穴系统时,通常无法为适当的纹理展开生成UV坐标。在这些情况下,我们必须使用另一种方式将纹理映射到我们的表面上。其中一种方法是三向贴图。
Figma 也提供了 REST API 接口获取设计稿的图形树结构,且大多数属性和 fig 文件的相同,文档说明也更详细。
本片文章前三章内容大家比较常用,后面的可能会不那么常用,前面的基础内容不想看了可以直接从第4段开始
领取专属 10元无门槛券
手把手带您无忧上云