首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeigh

2023-05-11:给你一个 m x n 的二进制矩阵 grid,每个格子要么为 0 (空)要么为 1 (被占据),给你邮票的尺寸为 stampHeight x stampWidth。...2.对 grid 中的每个为 0 的位置 (i, j),检查以该位置为左上角的子矩阵是否能够被指定的印章完全覆盖。...这里 diff 矩阵用于记录每个位置的变化量。3.遍历 grid 中的每一行,使用滚动数组的方式还原 cnt 和 pre 数组,并通过它们来计算每列中为 0 的位置的数量。...同时,如果某个位置 (i, j) 的值为 0 且它所在列中没有其他的 0,则返回 false;否则返回 true。时间复杂度为 O(mn),其中 m 和 n 分别表示矩阵 grid 的行数和列数。...空间复杂度为 O(mn),因为函数中创建了两个 m+1 行 n+1 列的二维数组 sum 和 diff,以及一个长度为 n+1 的一维数组 cnt 和 pre。

45520

2024-12-17:判断矩阵是否满足条件。用go语言,给定一个大小为 m x n 的二维矩阵 grid,我们需要判断每个格子

用go语言,给定一个大小为 m x n 的二维矩阵 grid,我们需要判断每个格子 grid[i][j] 是否符合以下两个条件: 1.如果下方的格子存在,则该格子必须与其下方格子相等,即 grid[i]...如果矩阵中的所有格子都满足这两个条件,则返回 true;否则返回 false。 1 n, m <= 10。 0 矩阵元素时,使用两个嵌套的 for 循环,分别遍历行和列。 • 初始化遍历矩阵时的索引变量 i 和 j。...4.时间复杂度: • 假设矩阵的维度为 m x n,那么总共需要遍历 m x n 个元素。 • 因此,总的时间复杂度为 O(mn)。...5.额外空间复杂度: • 除了存储输入二维矩阵 grid 的空间外,没有额外的空间开销。 • 因此,总的额外空间复杂度为 O(1)。

8020
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Spark学习矩阵分解推荐算法

    而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$     ...其中k为分解成低维的维数,一般远比m和n小。...如果是隐式反馈,则是评分矩阵对应的隐式反馈矩阵。     2) rank : 矩阵分解时对应的低维的维数。即$P_{m \times k}^TQ_{k \times n}$中的维度k。...Spark推荐算法实例     下面我们用一个具体的例子来讲述Spark矩阵分解推荐算法的使用。     这里我们使用MovieLens 100K的数据,数据下载链接在这。     ...Rating类的RDD了,现在我们终于可以把整理好的数据拿来训练了,代码如下, 我们将矩阵分解的维度设置为20,最大迭代次数设置为5,而正则化系数设置为0.02。

    1.5K30

    探索MLlib机器学习

    MLlib库包括两个不同的部分: pyspark.mllib 包含基于rdd的机器学习算法API,目前不再更新,以后将被丢弃,不建议使用。...pyspark.ml 包含基于DataFrame的机器学习算法API,可以用来构建机器学习工作流Pipeline,推荐使用。...这些模型的接口使用方法基本大同小异,下面仅仅列举常用的决策树,随机森林和梯度提升树的使用作为示范。更多范例参见官方文档。...交叉验证模式使用的是K-fold交叉验证,将数据随机等分划分成K份,每次将一份作为验证集,其余作为训练集,根据K次验证集的平均结果来决定超参选取,计算成本较高,但是结果更加可靠。...并可以使用Matrices和Vectors提供的工厂方法创建向量和矩阵。

    4.1K20

    推荐算法|矩阵分解模型

    评分预测 & TopN推荐 两者属于推荐系统的应用场景。评分预测将用户对商品的打分表示为一个二维矩阵,如无打分则空,因此打分矩阵非常稀疏,评分预测就是根据已有打分补全缺失打分的过程。...2 原理简述 矩阵分解指将一个大的矩阵转化为两个小矩阵相乘: ?...对应在推荐场景中,大矩阵表示用户对物品的评分,将大矩阵转化为用户矩阵和物品矩阵相乘,小矩阵的维度k解释为隐含的兴趣点,原本缺失的地方通过两个矩阵相乘也得到了取值,该取值就是预测的分数。 ?...3 pyspark实现 spark中有通过ALS实现矩阵分解的机器学习库,可直接调用。...from pyspark.ml.evaluation import RegressionEvaluator from pyspark.ml.recommendation import ALS from

    93910

    2023-05-07:给你一个大小为 n x n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。 返回执行此操作后,grid 中最大的岛屿面积是多少

    2023-05-07:给你一个大小为 n x n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。返回执行此操作后,grid 中最大的岛屿面积是多少?...2.遍历矩阵 grid,对于每个位置上的值,如果当前位置上的值为非零正整数,则更新答案为当前岛屿的大小。...3.遍历矩阵 grid,当当前位置上的值为 0 时,分别查看该位置上、下、左、右四个方向是否有与其相邻且已经被访问过的岛屿,并将它们的大小累加起来。...如果这些岛屿的大小之和加上当前位置上自身的大小可以更新最大岛屿面积,则更新答案。4.返回答案。时间复杂度:$O(n^2)$ ,遍历了三次矩阵,每次遍历的时间复杂度均为 $O(n^2)$。...空间复杂度:$O(n^2)$,使用了两个二维数组,每个数组都是 $n \times n$ 的大小。

    36210

    2022-04-22:给你一个大小为 m x n 的矩阵 board 表示甲板,其中,每个单元格可以是一艘战舰 X 或者是一

    2022-04-22:给你一个大小为 m x n 的矩阵 board 表示甲板,其中,每个单元格可以是一艘战舰 'X' 或者是一个空位 '.' ,返回在甲板 board 上放置的 战舰 的数量。...换句话说,战舰只能按 1 x k(1 行,k 列)或 k x 1(k 行,1 列)的形状建造,其中 k 可以是任意大小。两艘战舰之间至少有一个水平或垂直的空位分隔 (即没有相邻的战舰)。...甲板上的战舰。 来自米哈游。 答案2022-04-22: 并查集或者岛问题都行,但这不是最优解。 数战舰的左上角,统计左上角的点的个数就行。 时间复杂度:O(N**2)。 代码用rust编写。

    38030

    Spark编程实验六:Spark机器学习库MLlib编程

    PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过setK()方法将主成分数量设置为3,把连续型的特征向量转化成一个3维的主成分。...该数据集类变量为年收入是否超过50k,属性变量包含年龄、工种、学历、职业、人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。...PCA(主成分分析)是通过正交变换把一组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。...、支持向量机、朴素贝叶斯、聚类算法(如K-means和层次聚类)、推荐系统(如协同过滤和基于矩阵分解的方法)等。...通过深入学习和实践 MLlib,我们可以更好地理解和应用各种机器学习算法,掌握大规模数据处理和分布式计算的技巧,为解决实际问题提供强大的工具和框架。

    6400

    PySpark初级教程——第一步大数据分析(附代码实现)

    请记住,如果你使用的是PySpark,就不需要安装它。但是如果你使用JAVA或Scala构建Spark应用程序,那么你需要在你的机器上安装SBT。...当大多数数字为零时使用稀疏向量。要创建一个稀疏向量,你需要提供向量的长度——非零值的索引,这些值应该严格递增且非零值。...可以从MatrixEntry的RDD创建坐标矩阵 只有当矩阵的维数都很大时,我们才使用坐标矩阵 from pyspark.mllib.linalg.distributed import CoordinateMatrix...RDD中创建矩阵块,大小为3X3 b_matrix = BlockMatrix(blocks, 3, 3) #每一块的列数 print(b_matrix.colsPerBlock) # >> 3...在即将发表的PySpark文章中,我们将看到如何进行特征提取、创建机器学习管道和构建模型。

    4.5K20

    Pyspark学习笔记(五)RDD的操作

    提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、PySpark RDD 转换操作 1.窄操作 2.宽操作 3.常见的转换操作表 二、pyspark 行动操作 三、...(n) 返回RDD的前n个元素(无特定顺序)(仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中) takeOrdered(n, key) 从一个按照升序排列的RDD,或者按照...key中提供的方法升序排列的RDD, 返回前n个元素(仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中) https://spark.apache.org/docs/2.2.1.../api/python/pyspark.html#pyspark.RDD takeSample(withReplacement, num, seed=None) 返回此 RDD 的固定大小的采样子集 top...(n) 返回RDD的前n个元素(按照降序输出, 排序方式由元素类型决定) first() 返回RDD的第一个元素,也是不考虑元素顺序 reduce() 使用指定的满足交换律/结合律的运算符来归约

    4.4K20

    Spark Extracting,transforming,selecting features

    ,训练得到Word2VecModel,该模型将每个词映射到一个唯一的可变大小的向量上,Word2VecModel使用文档中所有词的平均值将文档转换成一个向量,这个向量可以作为特征用于预测、文档相似度计算等...,一个简单的Tokenizer提供了这个功能,下面例子展示如何将句子分割为单词序列; RegexTokenizer允许使用更多高级的基于正则表达式的Tokenization,默认情况下,参数pattern...(即主成分)的统计程序,PCA类训练模型用于将向量映射到低维空间,下面例子演示了如何将5维特征向量映射到3维主成分; from pyspark.ml.feature import PCA from pyspark.ml.linalg...,这可以通过原始维度的n阶组合,PolynomailExpansion类提供了这一功能,下面例子展示如何将原始特征展开到一个3阶多项式空间; from pyspark.ml.feature import...N的真值序列转换到另一个在频域的长度为N的真值序列,DCT类提供了这一功能; from pyspark.ml.feature import DCT from pyspark.ml.linalg import

    21.9K41

    Pyspark学习笔记(四)弹性分布式数据集 RDD(上)

    创建 RDD ②引用在外部存储系统中的数据集 ③创建空RDD 5、RDD并行化 6、PySpark RDD 操作 7、RDD的类型 8、混洗操作 前言 参考文献. 1、什么是 RDD - Resilient...对于这些应用程序,使用执行传统更新日志记录和数据检查点的系统(例如数据库)更有效。 RDD 的目标是为批处理分析提供高效的编程模型,并离开这些异步应用程序。...第二:使用coalesce(n)方法**从最小节点混洗数据,仅用于减少分区数**。 这是repartition()使用合并降低跨分区数据移动的优化或改进版本。...参考文献 二者最大的区别是,转化操作是惰性的,将一个 RDD 转换/更新为另一个,意味着直到我们调用一个 行动操作之前,是不会执行计算的。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务

    3.9K10

    PySpark︱pyspark.ml 相关模型实践

    = model2.weights True >>> model3.layers == model.layers True 主函数为: class pyspark.ml.classification.MultilayerPerceptronClassifier...,自己的训练集是一次性将 特征+target一起给入模型,所以在计算特征个数的时候,需要整体-1 blockSize 用于在矩阵中堆叠输入数据的块大小以加速计算。...如果块大小大于分区中的剩余数据,则将其调整为该数据的大小。 本来建议大小介于10到1000之间。...默认值:128,现在比较建议设置为1 ---- 模型存储与加载 笔者自己在使用GBDT的时候,有点闹不明白:GBTClassificationModel和GBTClassifier的区别,因为两者都可以...如果是训练之后的model,需要使用GBTClassificationModel来进行save和load. ?

    2K20

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(上)

    ③创建空RDD 5、RDD并行化 6、PySpark RDD 操作 7、RDD的类型 8、混洗操作 系列文章目录: ---- # 前言 本篇主要是对RDD做一个大致的介绍,建立起一个基本的概念...以Pyspark为例,其中的RDD就是由分布在各个节点上的python对象组成,类似于python本身的列表的对象的集合。...对于这些应用程序,使用执行传统更新日志记录和数据检查点的系统(例如数据库)更有效。 RDD 的目标是为批处理分析提供高效的编程模型,并离开这些异步应用程序。...第二:使用coalesce(n)方法**从最小节点混洗数据,仅用于减少分区数**。 这是repartition()使用合并降低跨分区数据移动的优化或改进版本。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务

    3.9K30

    盘点8个数据分析相关的Python库(实例+代码)

    数据处理常用到NumPy、SciPy和Pandas,数据分析常用到Pandas和Scikit-Learn,数据可视化常用到Matplotlib,而对大规模数据进行分布式挖掘时则可以使用Pyspark来调用...import numpy as np a = np.array(6) a.dtype output: dtype('int64') 上例中,数组a的数据类型为int64,如果使用的是32...了解了以上概念,接着来看NumPy数组中比较重要的ndarray对象的属性: ndarray.ndim:秩,即轴的数量或维度的数量 ndarray.shape:数组的维度,如果存的是矩阵,如n×m矩阵则输出为...n行m列 ndarray.size:数组元素的总个数,相当于.shape中n×m的值 ndarray.dtype:ndarray对象的元素类型 ndarray.itemsize:ndarray对象中每个元素的大小...PySpark是Spark社区发布的在Spark框架中支持Python的工具包,它的计算速度和能力与Scala相似。

    2.6K20

    如何在CDH中使用PySpark分布式运行GridSearch算法

    温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。...Python的sklearn包中GridSearch模块,能够在指定的范围内自动搜索具有不同超参数的不同模型组合,在数据量过于庞大时对于单节点的运算存在效率问题,本篇文章Fayson主要介绍如何将Python...内容概述 1.环境准备 2.Python和PySpark代码示例 3.示例运行 测试环境 1.CM和CDH版本为5.14.2 2.Redhat7.4 3.Spark2.2.0 2.环境准备 ---- 1....如果不清楚,可以参考上面的k-fold章节里面的超链接 score = 'precision' #构造这个GridSearch的分类器,5-fold clf = GridSearchCV(SVC(),..., y_pred)) (可左右滑动) 4.Pyspark版GridSearch代码 ---- 如下是PySpark的示例代码: # -*- coding: utf-8 -*- from sklearn

    1.4K30

    如何在CDSW上分布式运行GridSearch算法

    温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。...Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 在前面的文章Fayson介绍了《如何在CDH...中使用PySpark分布式运行GridSearch算法》,本篇文章Fayson主要介绍如何在CDSW上向CDH集群推送Gridsearch算法进行分布式计算。...(spark.sparkContext, svr, tuned_parameters, cv=5, scoring='%s_weighted'% score) #只在训练集上面做k-fold,然后返回最优的模型参数...5.总结 1.使用pyspark分布式运行gridsearch算法,需要在CDH集群的所有节点安装scikit-learn的Python依赖包 2.如果使用spark client模式提交作业则只需要在当前节点安装

    1.1K20

    如何在matlab编程中逢山开路、遇水搭桥?

    相信小伙伴们在matlab编程中肯定最不愿意遇见的就是“Error”了吧,前几天帮忙一位小伙伴写代码,其中需要使用到一个圆形区域去逐行扫描矩阵,以确定每个矩阵元周围元素的分布情况。...如果直接用矩阵位置索引来进行相关计算,边界区域必然会出现小于或等于0以及大于矩阵本身大小的索引值,若不进行妥善处理,就会出现久违的“Error”。 今天就给介绍一个函数组合套件。...下面就以圆形区域逐行扫描矩阵来说明如何在应用过程中巧妙地使用try...catch...end语句来让程序即使遇到错误也能够照常运行下去。...% 这里使用try...catch...end巧妙避开了错误索引, % 而只计算矩阵大小范围内索引值,比使用if语句更简洁 tmp = I(m,...图片来源:由 bashan 设计制作,如要使用请联系matlab爱好者公众号授权。

    1K20

    如何动手设计和构建推荐系统?看这里

    这个矩阵通常可用一个 scipy 稀疏矩阵来表示,因为一些特定的电影没有评分,所有许多单元格都是空的。如果数据稀疏,协同过滤就没什么用,所以我们需要计算矩阵的稀疏度。 ?...这里需要注意的另一个重点是,空的单元格实际上代表新用户和新电影。因此,如果新用户的比例很高,那么我们可能会考虑使用其他推荐方法,如基于内容的过滤或混合过滤。...矩阵分解是协同过滤中常用的一种技术,尽管也有其它方法,如邻域法(Neighbourhood method)。以下是相关步骤: 将用户-物品矩阵分解为两个潜在因子矩阵——用户因子矩阵和物品因子矩阵。...这个重建的矩阵补充了原始用户-物品矩阵中的空白单元格,因此现在已经知道未知的评分了。 但是我们如何实现上面所示的矩阵分解呢?...因此,我们的目标是找到给出最佳 Precision@K 的参数或者想要优化的任何其它评估指标。一旦找到参数,我们就可以重新训练模型,以获得预测的评分,并且我们可以使用这些结果生成推荐。 4.

    60110

    7道SparkSQL编程练习题

    公众号后台回复关键词:pyspark,获取本项目github地址。 为强化SparkSQL编程基本功,现提供一些小练习题。 读者可以使用SparkSQL编程完成这些小练习题,并输出结果。...import findspark #指定spark_home为刚才的解压路径,指定python路径 spark_home = "/Users/liangyun/ProgramFiles/spark-3.0.1...from pyspark.sql import SparkSession #SparkSQL的许多功能封装在SparkSession的方法接口中 spark = SparkSession.builder...",16,77),("DaChui",16,66),("Jim",18,77),("RuHua",18,50)] n = 3 4,排序并返回序号 #任务:排序并返回序号, 大小相同的序号可以不同 data...87| |HanMeiMei| 16| 77| | Jim| 18| 77| +---------+---+-----+ 4,排序并返回序号 #任务:按从小到大排序并返回序号, 大小相同的序号可以不同

    2.1K20
    领券