首页
学习
活动
专区
圈层
工具
发布

你不可不知的任务调度神器-AirFlow

执行器:Executor 是一个消息队列进程,它被绑定到调度器中,用于确定实际执行每个任务计划的工作进程。有不同类型的执行器,每个执行器都使用一个指定工作进程的类来执行任务。...例如,LocalExecutor 使用与调度器进程在同一台机器上运行的并行进程执行任务。其他像 CeleryExecutor 的执行器使用存在于独立的工作机器集群中的工作进程执行任务。...Workers:这些是实际执行任务逻辑的进程,由正在使用的执行器确定。 其中主要的部件介绍如下: Scheduler 调度器。...最后,在执行过程中,先封装成一个LocalTaskJob,然后调用taskrunner开启子进程执行任务。...tutorial # 打印出 'tutorial' DAG 的任务层次结构 airflow list_tasks tutorial --tree 然后我们就可以在上面我们提到的UI界面中看到运行中的任务了

4.7K21

Airflow 使用总结(二)

一、相同任务不同参数并列执行 最近几周一直在折腾 Airflow ,本周在写一个流水线任务,分为 4 个步骤,第一步会读取数据库 db ,然后是对读取的数据根据某个数据指标进行分组处理,同一个任务接收多组数据参数并列执行任务...XCom 的本质就是把 task 需要传递的信息以 KV 的形式存到 DB 中,而其他 task 则可以从DB中获取。...XCom 存储的是 KV 形式的数据对,Airflow 包装了 xcom_push 和 xcom_pull 两个方法,可以方便进行存取操作。...注意: 如果 Airflow 部署在 k8s 上,就建议不要使用 xcom ,在 K8s 中运行自定义 XCom 后端会给 Airflow 部署带来更多的复杂性。...可以把任务输出的结果保存到数据库 DB 中,本质上和使用 xcom 是一样的。

1.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Airflow速用

    /howto/operator/index.html# Task:当通过 Operator定义了执行任务内容后,在实例化后,便是 Task,为DAG中任务集合的具体任务 Executor:数据库记录任务状态...Executor间(如 LocalExecutor,CeleryExecutor)不同点在于他们拥有不同的资源以及如何利用资源分配工作,如LocalExecutor只在本地并行执行任务,CeleryExecutor...2. airflow.cfg文件中配置 发送邮件服务 ?  ...54 """ 任务间数据交流方法     使用Xcoms(cross-communication),类似于redis存储结构,任务推送数据或者从中下拉数据,数据在任务间共享     推送数据主要有2中方式...:1:使用xcom_push()方法  2:直接在PythonOperator中调用的函数 return即可     下拉数据 主要使用 xcom_pull()方法  官方代码示例及注释: 1 from

    6.6K10

    Airflow 实践笔记-从入门到精通二

    为了解决这些问题,最近比较深入研究Airflow的使用方法,重点参考了官方文档和Data Pipelines with Apache Airflow,特此笔记,跟大家分享共勉。...为了提高相同DAG操作的复用性,可以使用subDAG或者Taskgroup。 Operator 在任务流中的具体任务执行中,需要依据一些外部条件,例如之前任务的执行时间、开始时间等。...除了公有变量,如果operator之间要互相传递参数或者中间过程数据,例如一个operator要依赖另一个operator的输出结果进行执行,有以下几个方式 使用XCom,有点像dict对象,存储在airflow...另外,XCom如果设置过多后,也无形中也增加了operator的约束条件且不容易直观发现。在前端UI的adimin-》Xcoms里可以看到各个DAG用到的值。...Airflow2中允许自定义XCom,以数据库的形式存储,从而支持较大的数据。 # 从该实例中的xcom里面取 前面任务train_model设置的键值为model_id的值。

    3.4K20

    Airflow 做 ETL,真不是“排个 DAG 就完事儿”:那些年我踩过的坑与悟出的道

    配置不合理、调度不规范、任务不隔离、Operator滥用、XCom滥发消息……这些问题不踩上几次,根本意识不到它们有多“致命”。...2.XCom慎用:不要把大对象丢进去我见过最魔幻的Airflow事故:某同事把一个100MB的PandasDataFrame通过XCom往下游传……Airflow的metadataDB(MySQL/Postgres...原则:XCom只能传Metadata、小量字符串,不传数据本体。怎么传数据?...正确思路:它必须是一条链,或者清晰的树,而不是蜘蛛网。如果DAG长这样,那你就成功打造了生产事故:[外链图片转存中......真正让它变得“不稳定”的,是使用它的人。只要记住一句话:Airflow做ETL,不是搭一个系统,而是培养一套团队工程文化。

    20900

    MCP 与工作流引擎(如 Airflow)

    通过分析工作流引擎在现代 IT 架构中的核心作用,详细阐述 MCP 与 Airflow 集成的架构设计、API 实现、执行流程等关键技术。...:详细介绍 MCP v2.0 如何为 Airflow 设计和实现标准化的 Operator 动态任务生成机制:深入解析 MCP v2.0 如何基于 AI 模型动态生成工作流任务 跨系统状态同步协议:探讨...MCP v2.0 如何实现与工作流引擎之间的状态同步,确保任务状态的一致性 2.3 与前批次的递进关系 本文是对前批次文章的自然递进: 在前批次的 “MCP Client 与模型对接” 中,我们探讨了...3.2.3 MCP Airflow Operator 使用示例 # 示例:MCP Airflow Operator 使用代码 from airflow import DAG from airflow.utils.dates...运行 DAG 将 DAG 文件放到 Airflow DAGs 目录中,然后在 Airflow Web UI 中启用并触发 DAG 执行。

    8810

    【翻译】Airflow最佳实践

    如果可能,我们应该XCom来在不同的任务之间共享小数据,而如果如果数据量比较大,则应该使用分布式文件系统,如S3或者HDFS等,这时可以使用XCom来共享其在S3或者HDFS中的文件地址。...在Airflow中,使用变量去连接到元数据DB,获取数据,这会减慢解释的速度,并给数据库增加额外的负担。...使用变量最好的方式就是通过Jinja模板,它能够延迟读取其值直到任务的执行(这句话的意思应该是延期加载,即实际用到的时候才去读取相应的值)。模板的语法如下: {{ var.value....每次Airflow解析符合条件的python文件时,任务外的代码都会被运行,它运行的最小间隔是使用min_file_process_interval来定义的。 2....2.4 暂存(staging)环境变量 如果可能,在部署到生产环境运行起来之前,我们应该保持一个暂存环境去测试完整的DAG。需要确保我们的DAG是已经参数化了的,而不是在DAG中硬编码。

    3.8K10

    Apache Airflow:安装指南和基本命令

    安装Apache-Airflow的更可取的方法是将其安装在虚拟环境中。Airflow需要最新版本的 PYTHON 和 PIP(用于Python的软件包安装程序)。.../bin文件夹,然后使用以下命令将其激活: cd apache_airflow/bin source activate Next, we have to set the airflow home path...当我们在Airflow中创建用户时,我们还必须定义将为该用户分配的角色。默认情况下,Airflow 包含一组预定义的角色:Admin, User, Op, Viewer, and Public。...Lastly, we went through some basic commands of Airflow. 在这篇博客中,我们了解了如何使用命令行界面在本地系统上正确安装 Airflow。...我们还看到了如何为 Airflow 实例创建第一个用户,以及用户可以拥有哪些角色。最后,我们介绍了Airflow的一些基本命令。

    3.8K10

    Airflow配置和使用

    默认是使用的SequentialExecutor, 只能顺次执行任务。...| +-------------------+ 17 rows in set (0.00 sec) centos7中使用mariadb取代了mysql, 但所有命令的执行相同...,可以使用backfill填补特定时间段的任务 airflow backfill -s START -e END --mark_success DAG_ID 端口转发 之前的配置都是在内网服务器进行的,...但内网服务器只开放了SSH端口22,因此 我尝试在另外一台电脑上使用相同的配置,然后设置端口转发,把外网服务器 的rabbitmq的5672端口映射到内网服务器的对应端口,然后启动airflow连接 。...不同机器使用airflow 在外网服务器(用做任务分发服务器)配置与内网服务器相同的airflow模块 使用前述的端口转发以便外网服务器绕过内网服务器的防火墙访问rabbitmq 5672端口。

    14.6K71

    闲聊Airflow 2.0

    引入编写 dag(有向无环图)的新方法:TaskFlow API 新的方法对依赖关系的处理更清晰,XCom 也更易于使用。...我认为这种新的配置调度方式的引入,极大改善了如何调度机器学习模型的配置任务,写过用 Airflow 调度机器学习模型的读者可以比较下,TaskFlow API 会更好用。...之前 Scheduler 的分布式执行是使用主从模型,但是在 Airflow 2.0 改成了主主模型,我的理解是就是基于元数据库,所有的 Scheduler 都是对等的。...在Airflow 2.0中,已根据可与Airflow一起使用的外部系统对模块进行了重组。...就个人而言,我倾向于使用事件驱动的AWS Lambda函数处理用例,这些用例通常在Airflow中通过传感器使用(例如,当特定文件到达S3后立即触发管道)。

    3.3K30

    任务流管理工具 - Airflow配置和使用

    默认是使用的SequentialExecutor, 只能顺次执行任务。...| +-------------------+ 17 rows in set (0.00 sec) centos7中使用mariadb取代了mysql, 但所有命令的执行相同...,可以使用backfill填补特定时间段的任务 airflow backfill -s START -e END --mark_success DAG_ID 端口转发 之前的配置都是在内网服务器进行的,...但内网服务器只开放了SSH端口22,因此 我尝试在另外一台电脑上使用相同的配置,然后设置端口转发,把外网服务器 的rabbitmq的5672端口映射到内网服务器的对应端口,然后启动airflow连接 。...不同机器使用airflow 在外网服务器(用做任务分发服务器)配置与内网服务器相同的airflow模块 使用前述的端口转发以便外网服务器绕过内网服务器的防火墙访问rabbitmq 5672端口。

    3.4K60

    77_自动化脚本:Makefile与Airflow

    本文将深入探讨如何利用Makefile和Airflow设计LLM Pipeline的独特DAG流程,涵盖从数据准备、模型训练、评估到部署的完整生命周期。...消息队列:在分布式部署中用于组件间通信。 在2025年,Airflow的架构已支持更高效的大规模工作流处理,特别是在Kubernetes环境中的部署,使其能够更好地支持LLM等计算密集型任务。...我们通过Airflow的Variable功能管理GPU设备和模型配置信息,然后通过环境变量传递给Makefile。...结论 本文深入探讨了如何利用Makefile和Airflow设计LLM Pipeline的独特DAG流程,涵盖了从基础概念、工具使用到高级特性和最佳实践的各个方面。...通过实际案例的分析,我们展示了Makefile和Airflow结合使用的强大能力,以及它们在构建高效、可靠、可扩展的LLM工作流中的重要作用。

    16710

    Airflow2.2.3 + Celery + MYSQL 8构建一个健壮的分布式调度集群

    前面聊了Airflow基础架构,以及又讲了如何在容器化内部署Airflow,今天我们就再来看看如何通过Airflow和celery构建一个健壮的分布式调度集群。...,没看过的可以点击链接先看下之前的文章,现在只需要在其他两个节点安装worker组件即可。...,因此这里需要修改一下docker-compose.yaml中x-airflow-common的volumes,将airflow.cfg通过挂载卷的形式挂载到容器中,配置文件可以在容器中拷贝一份出来,然后在修改...; 前期使用的时候,我们需要将docker-compose文件中的一些环境变量的值写入到airflow.cfg文件中,例如以下信息: [core] dags_folder = /opt/airflow/..." }, } 以上的参数是什么意思,可以访问官网查看,此处是通过rsync的rsh定义ssh命令,能够解决使用了私钥,自定义端口等安全措施的场景,当然你也可以使用配置无密访问,然后使用default.rsync

    2.3K10

    如何部署一个健壮的 apache-airflow 调度系统

    之前介绍过的 apache-airflow 系列文章 任务调度神器 airflow 之初体验 airflow 的安装部署与填坑 airflow 配置 CeleryExecutor 介绍了如何安装...、配置、及使用,本文介绍如何如何部署一个健壮的 apache-airflow 调度系统 - 集群部署。...webserver 守护进程使用 gunicorn 服务器(相当于 java 中的 tomcat )处理并发请求,可通过修改{AIRFLOW_HOME}/airflow.cfg文件中 workers 的值来控制处理并发请求的进程数...task),触发其实并不是真正的去执行任务,而是推送 task 消息至消息队列(即 broker)中,每一个 task 消息都包含此 task 的 DAG ID,task ID,及具体需要被执行的函数。...worker 守护进程将会监听消息队列,如果有消息就从消息队列中取出消息,当取出任务消息时,它会更新元数据中的 DagRun 实例的状态为正在运行,并尝试执行 DAG 中的 task,如果 DAG

    8.4K21

    大数据调度平台Airflow(二):Airflow架构及原理

    在Airflow中执行器有很多种选择,最关键的执行器有以下几种:SequentialExecutor:默认执行器,单进程顺序执行任务,通常只用于测试。LocalExecutor:多进程本地执行任务。...CeleryExecutor:分布式执行任务,多用于生产场景,使用时需要配置消息队列。DaskExecutor:动态任务调度,支持远程集群执行airflow任务。...Task Relationships:一个DAG中可以有很多task,这些task执行可以有依赖关系,例如:task1执行后再执行task2,表明task2依赖于task1,这就是task之间的依赖关系...内部task,这里的触发其实并不是真正的去执行任务,而是推送task消息到消息队列中,每一个task消息都包含此task的DAG ID,Task ID以及具体需要执行的函数,如果task执行的是bash...Worker进程将会监听消息队列,如果有消息就从消息队列中获取消息并执行DAG中的task,如果成功将状态更新为成功,否则更新成失败。

    7.7K33

    在Kubernetes上运行Airflow两年后的收获

    它的工作原理是获取 Airflow 数据库中运行和排队任务的数量,然后根据您的工作并发配置相应地调整工作节点的数量。...通过这样做,我们可以使用原生 Airflow 角色来强制访问控制,并且每个 DAG 必须通过最低的治理检查清单才能提交。 但是,如何将 DAG 同步到 Airflow 中呢?...例如,如果并发设置为 12 ,有 2 个 Celery 工作节点,那么就会有 24 个工作进程。 因此,为了避免同一工作进程中任务之间的内存泄漏,最好定期对其进行循环使用。...如果您在一个多个团队使用 Airflow 的环境中工作,您应该统一通知机制。 这样可以避免 A 团队从 Airflow 发送的 Slack 消息与 B 团队完全不同格式的消息,例如。...在 prd 环境中,通知将发送到我们的在线工具 Opsgenie。 一个通知器,多个目标和定制 自定义通知也是可模板化的,因此团队可以使用标准格式在 Slack 中创建信息消息,例如。

    1.8K10

    八种用Python实现定时执行任务的方案,一定有你用得到的!

    Scheduler的工作流程 使用分布式消息系统Celery实现定时任务 使用数据流工具Apache Airflow实现定时任务 Airflow 产生的背景...比如,如下的工作流中,任务T1执行完成,T2和T3才能开始执行,T2和T3都执行完成,T4才能开始执行。...TaskRelationships:DAGs中的不同Tasks之间可以有依赖关系,如 Task1 >>Task2,表明Task2依赖于Task2了。...执行器:Executor 是一个消息队列进程,它被绑定到调度器中,用于确定实际执行每个任务计划的工作进程。有不同类型的执行器,每个执行器都使用一个指定工作进程的类来执行任务。...例如,LocalExecutor 使用与调度器进程在同一台机器上运行的并行进程执行任务。其他像 CeleryExecutor 的执行器使用存在于独立的工作机器集群中的工作进程执行任务。

    3.7K30

    MYSQL 8 在GR 与 MYSQL 5.7 多了 哪些东西 “浅薄”的说说

    组复制目前使用XCom(组通信引擎)向组成员自动广播消息(事务),并检测组成员何时失败。...当需要向组广播消息时,每个组成员的组复制插件将消息转发到其本地XCom实例,XCom最终以相同的顺序将这些消息传递给每个组成员的组复制插件。...XCom 是单线程的,如果一个大事务在XCom中处理,那很可能造成的结果就是,其他XCom成员将现在这个busy 的 XCom成员驱逐出去,造成这个节点和集群脱离。...这意味着在开始删除任何数据之前,缓存可以存储最多50k的消息或接近1GB的数据;当达到空间限制或插槽限制(不可避免地会出现其中之一)时,缓存将删除一些旧条目,为新条目腾出空间。...items 来 Expel Timeout : group_replication_member_expel_timeout 这个参数是设置组复制组成员在产生怀疑后等待的一段时间,以秒为单位,然后将怀疑失败的成员从组中驱逐出去

    1.1K20
    领券