首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用CGAL非均匀地生成表面网格?

CGAL(Computational Geometry Algorithms Library)是一个开源的计算几何算法库,它提供了丰富的算法和数据结构,用于解决各种计算几何问题。其中包括非均匀地生成表面网格。

非均匀地生成表面网格是指根据给定的输入几何形状,生成具有不同分辨率的三角网格,以便更好地逼近原始几何形状的曲面特征。CGAL提供了一种称为Surface_mesh的数据结构,用于表示和操作三角网格。下面是使用CGAL非均匀地生成表面网格的步骤:

  1. 定义输入几何形状:可以使用CGAL提供的各种几何形状表示方法,如点云、多边形、曲线等。
  2. 创建Surface_mesh对象:使用CGAL的Surface_mesh数据结构创建一个空的三角网格对象。
  3. 插入顶点:将定义的几何形状中的顶点逐个插入到Surface_mesh对象中。
  4. 插入边和面:根据顶点之间的连接关系,逐个插入边和面到Surface_mesh对象中。
  5. 非均匀地细化网格:使用CGAL提供的非均匀细化算法,根据输入几何形状的曲面特征,对网格进行适当的细化操作。
  6. 输出结果:将生成的表面网格保存为文件或进行进一步的处理和分析。

CGAL提供了丰富的算法和函数,用于实现上述步骤。具体的代码示例和详细的文档可以在CGAL官方网站上找到。腾讯云没有直接相关的产品与CGAL非均匀地生成表面网格相关,但可以使用腾讯云提供的计算资源和存储服务来支持CGAL的运行和数据存储。

请注意,以上仅为一般性的回答,具体的实现方法和细节可能因应用场景和需求而有所不同。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 既可生成点云又可生成网格的超网络方法 ICML

    本文发表在 ICML 2020 中,题目是Hypernetwork approach to generating point clouds。利用超网络(hypernetworks)提出了一种新颖的生成 3D 点云的方法。与现有仅学习3D对象的表示形式方法相反,我们的方法可以同时找到对象及其 3D 表面的表示。我们 HyperCloud 方法主要的的想法是建立一个超网络,返回特定(目标)网络的权重,目标网络将均匀的单位球上的点映射到 3D 形状上。因此,特定的 3D 形状可以从假定的先验分布中通过逐点采样来生成,并用目标网络转换。因为超网络基于自动编码器,被训练来重建3D 形状,目标网络的权重可以视为 3D 表面的参数化形状,而不像其他的方法返回点云的标准表示。所提出的架构允许以生成的方式找到基于网格的 3D 对象表示。

    03

    PointNet分享_1

    这类方法首先在三维形状上提取手工特征, 进而将这些特征作为深度神经网络的输入,用以学习高层特征表示。其优势在于可以充分利用现有的低层特征描述深度学习模型。比如, Bu 等人首先将热核特征和平均测地距离等构成的低层特征通过 Bag-of-Feature 模型转化为中层特征,接着采用深度置信网络(DBN)从中层特征中学习高层特征表示, 并成功应用于三维形状检索与识别。 Xie 等人首先提取三维形状 Heat Kernel Signature 特征的多尺度直方图分布作为自编码机的输入,然后在每个尺度上训练一个自编码机并将多个尺度隐含层的输出连接得到特征描述子, 并在多个数据集上测试了该方法用于形状分类的有效性。这类方法的缺陷在于,其仍然依赖手工特征的选择与参数优化,因此在某种程度上损失了深度学习的优势,无法从根本上克服手工特征存在的问题。

    01

    AD分类论文研读(1)

    原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化。该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然图像得到的预训练权重来初始化最先进的VGG和Inception结构,使用少量的MRI图像来重新训练全连接层。采用图像熵选择最翔实的切片训练,通过对OASIS MRI数据集的实验,他们发现,在训练规模比现有技术小近10倍的情况下,他们的性能与现有的基于深层学习的方法相当,甚至更好 介绍 AD的早期诊断可以通过机器学习自动分析MRI图像来实现。从头开始训练一个网络需要大量的资源并且可能结果还不够好,这时候可以选择使用微调一个深度网络来进行转移学习而不是重新训练的方法可能会更好。该研究使用VGG16和Inception两个流行的CNN架构来进行转移学习。结果表明,尽管架构是在不同的领域进行的训练,但是当智能地选择训练数据时,预训练权值对AD诊断仍然具有很好的泛化能力 由于研究的目标是在小训练集上测试转移学习的鲁棒性,因此仅仅随机选择训练数据可能无法为其提供表示MRI足够结构变化的数据集。所以,他们选择通过图像熵提供最大信息量的训练数据。结果表明,通过智能训练选择和转移学习,可以达到与从无到有以最小参数优化训练深层网络相当甚至更好的性能 方法 CNN的核心是从输入图像中抽取特征的卷积层,卷积层中的每个节点与空间连接的神经元的小子集相连,为了减少计算的复杂性,一个最大池化层会紧随着卷积层,多对卷积层和池化层之后会跟着一个全连接层,全连接层学习由卷积层抽取出来的特征的非线性关系,最后是一个soft-max层,它将输出归一化到期望的水准 因为小的数据集可能会使损失函数陷入local minima,该研究使用转移性学习的方法来尽量规避这种情况,即使用大量相同或不同领域的数据来初始化网络,仅使用训练数据来重新训练最后的全连接层 研究中使用两个流行的架构: VGG16

    04
    领券