首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度学习|Tensorflow2.0基础

02 Tensorflow的数据类型 数值类型 Tensorflow的数值类型我们称之为张量(Tensor),根据不同的维度我们可以分成以下几个部分。...tf.strings.join() # 字符串的切分 tf.strings.split() 03 Tensorflow的数值精度 对于数值类型的张量,我们可以保存为不同字节长度的精度,如浮点数3.14...[3, 4]]) # var中的属性 aa.name, aa.trainable 05 Tensorflow创建张量 在Tensorflow中我们不仅能够从python列表创建张量,同样也可以从numpy...x[0][1][2][1] # 当维度变的越来越高的时候,[i][j][k]的书写会变的很不方便,我们可以尝试采用[i,j,k]的方法 x[0, 1, 2, 1] # 切片 ''' 切片在每一个维度上的很多使用方法和我们在列表中使用的切片是一样的...''' # 避免过多冒号的写法 x[...,:2] 08 维度变换 我们可以通过维度变换的形式将数据进行任意形式的切换,满足不同场合的运算需求。

77320

详解 tf.slice 函数

TensorFlow 张量的索引切片方式和 NumPy 模块差不多。...与此同时,TensorFlow2.X 也提供了一些比较高级的切片函数,比如: 对张量进行不规则切片提取的 tf.gather、tf.gather_nd 和 tf.boolean_mask; 对张量的连续子区域进行切片提取的...相比于对张量进行不规则的切片提取的三个函数,tf.slice 的实现方式比较特殊,所以本文来详细的介绍 tf.slice 函数。...tf.slice( input_, begin, size, name=None ) tf.slice 函数主要有三个参数: input_: 待切片提取的张量 begin: 张量每个维度进行切片操作的起始位置...,对于 [1, 0, 0],我们可以理解为: 第一个维度从位置 1 开始 第二个维度从位置 0 开始 第三个维度从位置 0 开始 size 参数为张量每个维度取出元素的个数,对于 [1, 1, 3],我们可以理解为

69610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    tf.unstack

    通过沿着轴维对num张量进行切分,从值中解压缩num张量。如果没有指定num(默认值),则从值的形状推断它。如果value.shape[axis]未知,将引发ValueError。...例如,给定一个形状张量(A, B, C, D);如果axis == 0,那么输出中的第i张量就是切片值[i,:,:,:],而输出中的每个张量都有形状(B, C, D)。...(注意,与split不同的是,未打包的维度已经没有了)。如果axis == 1,则输出中的第i张量为切片值[:,i,:,:],输出中的每个张量都有形状(A, C, D)等。这是堆栈的反面。...默认为第一个维度。负值环绕,所以有效范围是[-R, R]。name: 操作的名称(可选)。返回值:张量对象的列表从值中分解。...is unspecified and cannot be inferred.ValueError: If axis is out of the range [-R, R).原链接: https://tensorflow.google.cn

    1K20

    TensorFlow简介

    TensorFlow是由Google开发的用于解决复杂数学问题的库。本篇介绍将简述TensorFlow示例,如何定义、使用张量执行数学运算,以及查看其他机器学习相关示例。...它们就像TensorFlow用来处理数据的变量。每个张量都有一个维度和一个类型。 维度是指张量的行和列。您可以定义一维张量,二维张量和三维张量,关于张量详细使用我们将在后面看到。...(arr,tf.float64) print(tensor) [图片] 从结果中,可以看到张量的定义,但看不到张量的元素。...裁剪或切片图像使用TensorFlow 首先,我们把这些值放在一个占位符上,如下所示: myimage = tf.placeholder("int32",[None,None,3]) 为了裁剪图像,我们将使用如下的切片运算符...示例都向您展示了如何使用TensorFlow进行操作。

    6.3K160

    list转torch tensor

    本文将介绍如何将Python中的列表(list)转换为Torch张量。1. 导入所需的库首先,我们需要导入所需的库。确保你已经安装了Torch。...张量(Tensor)张量(Tensor)是深度学习中最基本的数据结构之一,类似于多维数组或矩阵。张量在PyTorch、TensorFlow等深度学习框架中被广泛使用,用于表示和处理多维数据。...属性和特点维度(Rank):张量可以是任意维度的数据结构。一维张量是一个向量,二维张量是一个矩阵,以此类推。可以理解为多维空间中的数组。形状(Shape):张量的形状是表示张量每个维度上的大小。...= torch.zeros(5) # 创建一个长度为5的全0张量# 从Python列表创建张量list_tensor = torch.tensor([1, 2, 3, 4]) # 从列表[1, 2...支持索引和切片:可以通过索引访问列表中的元素,也可以通过切片获取列表的子集。

    58230

    TF-char4-TF2基本语法

    char4-TensorFlow基础入门 TensorFlow是一个面向深度学习算法的科学计算库,内部数据保存在张量Tensor对象中,所有的运算操作都是基于张量进行的 ?...通常将标量、向量、矩阵也统称为张量;张量的维度和形状自行判断 标量 创建标量的关键字是constant,必须通过TF规定的方式去创建张量 import tensorflow as tf a = 2...创建张量 从Numpy、List对象创建 numpy中的array数组和Python中的list都可以直接用来创建张量,通过tf.convert_to_tensor import tensorflow...4维张量,通过kernel属性来查看 layer.kernel.shape 索引和切片 索引 从0开始 两种方式 [i][j][k]......4,X 的 shape 为[2,4] 线性层的输出为3个节点,其shape为[4,3] 偏置b的shape为[3] 那么不同shape的张量之间如何进行相加?

    1.6K20

    TensorFlow2.X学习笔记(3)--TensorFlow低阶API之张量

    TensorFlow的低阶API主要包括张量操作,计算图和自动微分。 如果把模型比作一个房子,那么低阶API就是【模型之砖】。...一、张量的结构操作 张量的操作主要包括张量的结构操作和张量的数学运算。 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。...张量的索引切片方式和numpy几乎是一样的。...切片时支持缺省参数和省略号。 对于tf.Variable,可以通过索引和切片对部分元素进行修改。 对于提取张量的连续子区域,也可以使用tf.slice....中实现主成分分析降维 4、广播机制 1、如果张量的维度不同,将维度较小的张量进行扩展,直到两个张量的维度都一样。

    1.5K30

    tensorflow之tf.tiletf.slice等函数的基本用法解读

    最终的输出张量维度不变。 函数定义: tf.tile( input, multiples, name=None) input是待扩展的张量,multiples是扩展方法。...切片的尺寸size表示输出tensor的数据维度,其中size[i]表示在第i维度上面的元素个数。...这里解释一下tf.slice()的作用和用法; silce_1,此时切片的起点是[0,0,0],切片的大小是[1,1,3];于是从原点开始切一个[1,1,3]的数据,也就是一个批次的(1,3) slice..._2,此时切片的起点是[1,0,0],切片的大小是[1,2,3];意思就是从第二个批次的数据开始进行切片,切下一个批次的(2,3)的数据 slice_3,此时切片的起点仍然是[1,0,0],切片的大小是...[2,1,3];就是从第二个批次开始,切一个两个批次的(1,3)的数据 示例: import tensorflow as tf sess = tf.Session() input = tf.constant

    2.7K30

    张量的基础操作

    例如,零阶张量是一个标量,一阶张量是一个向量,二阶张量是一个矩阵,三阶及以上的张量则可以看作是高维数组。 在不同的上下文中,张量的意义可能会有所不同: 数据表示:在深度学习中,张量通常用于表示数据。...这通常涉及到将一个张量的数据类型转换为另一个数据类型,以便满足特定的计算需求或优化内存使用。 TensorFlow 在TensorFlow中,你可以使用tf.cast函数来转换张量的类型。...import tensorflow as tf # 创建一个张量 tensor = tf.constant([1.0, 2.0, 3.0], dtype=tf.float32) # 将张量的类型从...例如,对于一个二维张量 tensor,可以使用 tensor[i, j] 来获取第 i 行第 j 列的元素。 切片索引:可以用来选择张量的子张量。...通过指定起始和终止索引以及步长,可以获取张量中的一部分。例如,t1[2:8] 将会返回从索引2到7的张量元素,形成一个新张量。

    19010

    机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习

    理解张量对于理解神经网络如何处理和操作数据至关重要。让我来详细解释张量的相关知识。 张量的基本概念 张量是什么? 在计算机科学和数学中,张量是多维数组的泛化。...在PyTorch、TensorFlow等机器学习框架中,张量是这些框架中用于表示和操作数据的基本数据结构。它可以是一个标量(零维张量)、向量(一维张量)、矩阵(二维张量),甚至更高维的数据结构。...形状变换: 可以改变张量的形状,例如从一个三维张量变为二维,或者反之,这在神经网络的不同层之间传递数据时非常常见。...(ones_tensor) 2.张量的基本操作: 索引和切片:使用索引和切片访问和操作张量中的元素。...这些参数张量的维度和形状决定了神经网络的结构和复杂度。 计算过程: 在前向传播过程中,输入张量经过一系列层级的变换和激活函数应用,生成输出张量。

    10610

    分布式训练 Parameter Sharding 之 Google Weight Sharding

    其次,由于前向和后向传播已经在副本中沿批次维度进行了划分,因此它们必须在下一个训练步骤中获得全部权重。...在具有平铺内存布局(tiled memory layouts)的加速器上,如何将张量在不同副本之间划分是很棘手的,因为格式化数据可能会很费事费力。...因此,张量的分片被表示为一系列数据格式化操作符,然后跟着一个动态切片(dynamic-slice)操作符,如图6所示。动态切片指定分片的维度,并使用副本id为每个副本计算分片的偏移量。...非元素运算符可能会限制如何对张量的重新格式化。...这是因为折叠的维度在reduce结果中已经丢失,因此它们无法分片,但每个副本的本地结果不同于其他副本,其仅从其自己的输入分片捕获数据。

    1K20

    tensors used as indices must be long or byte tensors

    张量用作索引必须是长整型或字节型张量在使用深度学习框架如PyTorch或TensorFlow进行张量操作时,你可能会遇到一个错误,该错误提示 "张量用作索引必须是长整型或字节型张量"。...这个错误通常发生在你试图使用一个张量作为另一个张量的索引时,但是张量的数据类型不适合用于索引。 在本篇博客文章中,我们将探讨这个错误背后的原因,如何理解它以及如何修复它。...转换数据类型如果索引张量具有不同的数据类型,你可以使用 to() 方法将其转换为正确的数据类型。...确保正确的维度这个错误的另一个常见原因是索引张量没有所需的维度。例如,如果你要索引一个二维张量,那么索引张量也应该是一个二维张量。确保索引张量的形状和大小与你尝试索引的张量的维度匹配。4....通过检查数据类型、进行必要的转换、确保正确的维度和验证索引范围,你可以解决这个错误并成功进行张量操作。 请记住始终仔细查阅所使用的深度学习框架的文档和要求,因为具体规则和数据类型可能有所不同。

    36960

    张量 101

    4 量化金融的张量 4.1 简介 在量化金融中,我们用股票数据举例来说明不同维度的张量,习惯将维度定义如下: ? 结合上表,下图清晰画出各个维度的代表的意思。 ?...4 维张量:加入频率维度 当你可以在时间维度上纵横 (不同天,如 t, t-1, t-2, …),可以在横截维度上驰骋 (不同股票,如茅台、平安等),可以在信息维度上选择 (不同产出,如收盘价、交易量等...国外和国内对于 tick 数据定义有些不同: 国外:任何委托单 (order) 使委托账本 (order book) 变化而得到的表格 国内:对委托账本的按一定切片时间 (500 毫秒,3 秒,6 秒等...(形状一样),但是 x 和 y 分别在不同维度的元素个数为 1。...来看看如何从“60000 张图片输入 X_train”经过一系列的张量运算得到“60000 个概率输出向量”,顺带也看看每次运算之后向量的形状如何变化。

    2.9K20

    机器学习常用术语超全汇总

    例如,假设我们使用输入矩阵左上角的 2x2 切片。这样一来,对此切片进行卷积运算将如下所示: 卷积层由一系列卷积运算组成,每个卷积运算都针对不同的输入矩阵切片。...特征规范 (feature spec) 用于描述如何从 tf.Example 协议缓冲区提取特征数据。...步长 (stride) 在卷积运算或池化中,下一个系列的输入切片的每个维度中的增量。例如,下面的动画演示了卷积运算过程中的一个 (1,1) 步长。...张量等级 (Tensor rank) 请参阅等级。 张量形状 (Tensor shape) 张量在各种维度中包含的元素数。...例如,张量 [5, 10] 在一个维度中的形状为 5,在另一个维度中的形状为 10。 张量大小 (Tensor size) 张量包含的标量总数。例如,张量 [5, 10] 的大小为 50。

    91610

    从模型源码梳理TensorFlow的乘法相关概念

    [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 目录 [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 0x00 摘要 0x01 矩阵乘积 1.1 matmul product...广播(broadcasting)指的是不同形状的张量之间的算数运算的执行方式。...4.1 目的 广播的目的是将两个不同形状的张量 变成两个形状相同的张量: TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations)。...: 两个张量的 trailing dimension(从后往前算起的维度)的轴长相等; 或 其中一个的长度为1; 即,如果两个数组的后缘维度(从末尾开始算起的维度) 的 轴长度相符或其中一方的长度为1,...因为从较低阶数张量的第一个维度开始扩展,所以应该将第二个张量扩展为shape=[2,2],也就是值为[[1,2], [1,2]]。

    1.7K20

    机器学习术语表

    例如,假设我们使用输入矩阵左上角的 2x2 切片。这样一来,对此切片进行卷积运算将如下所示: ? 卷积层由一系列卷积运算组成,每个卷积运算都针对不同的输入矩阵切片。...特征规范 (feature spec) 用于描述如何从 tf.Example 协议缓冲区提取特征数据。...步长 (stride) 在卷积运算或池化中,下一个系列的输入切片的每个维度中的增量。例如,下面的动画演示了卷积运算过程中的一个 (1,1) 步长。...张量等级 (Tensor rank) 请参阅等级。 张量形状 (Tensor shape) 张量在各种维度中包含的元素数。...例如,张量 [5, 10] 在一个维度中的形状为 5,在另一个维度中的形状为 10。 张量大小 (Tensor size) 张量包含的标量总数。例如,张量 [5, 10] 的大小为 50。

    1K20
    领券