首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从Mri Nifti文件创建CNN的数据集?

从Mri Nifti文件创建CNN的数据集可以按照以下步骤进行:

  1. 理解Mri Nifti文件:Mri Nifti是一种常用的医学图像格式,用于存储三维医学图像数据。它包含图像数据和相关的元数据信息,如图像尺寸、像素分辨率等。
  2. 数据预处理:首先,需要对Mri Nifti文件进行预处理,以便用于CNN的训练。预处理步骤可能包括图像重采样、灰度标准化、去除噪声、图像增强等。
  3. 数据划分:将预处理后的Mri Nifti文件划分为训练集、验证集和测试集。通常,训练集用于模型的训练,验证集用于调整模型的超参数和监控模型的性能,测试集用于评估模型的泛化能力。
  4. 数据转换:将Mri Nifti文件转换为适合CNN训练的数据格式,如图像张量。可以使用Python的图像处理库(如PIL或OpenCV)加载Mri Nifti文件,并将其转换为NumPy数组或TensorFlow张量。
  5. 数据增强:为了增加数据集的多样性和泛化能力,可以应用数据增强技术,如随机旋转、平移、缩放、翻转等操作,生成更多的训练样本。
  6. 构建CNN模型:根据具体任务的需求,设计并构建适当的CNN模型。可以选择常见的架构,如LeNet、AlexNet、VGG、ResNet等,或根据实际情况进行调整和改进。
  7. 数据加载和训练:使用合适的深度学习框架(如TensorFlow、PyTorch)加载预处理后的数据集,并将其用于CNN模型的训练。可以使用批量梯度下降等优化算法进行模型的优化。
  8. 模型评估和调优:在训练过程中,监控模型在验证集上的性能指标,如准确率、精确率、召回率等。根据评估结果,调整模型的超参数、网络结构或数据处理方法,以提高模型的性能。
  9. 模型应用:训练完成后的CNN模型可以用于预测新的Mri Nifti图像数据。根据具体应用场景,可以将模型部署到云服务器、移动设备或嵌入式系统中。

腾讯云相关产品推荐:

  • 腾讯云图像处理(Image Processing):提供图像处理和分析的API和工具,可用于图像预处理、数据增强等操作。详情请参考:腾讯云图像处理
  • 腾讯云机器学习平台(AI Lab):提供了丰富的机器学习和深度学习工具,可用于构建和训练CNN模型。详情请参考:腾讯云机器学习平台
  • 腾讯云GPU服务器(GPU Cloud):提供高性能的GPU服务器实例,可用于加速深度学习训练和推理。详情请参考:腾讯云GPU服务器

请注意,以上推荐的腾讯云产品仅供参考,具体选择应根据实际需求和预算进行。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

DCP:一款用于弥散磁共振成像连接组学的工具箱

摘要:由弥散磁共振成像(dMRI)衍生的大脑结构网络反映了大脑区域之间的白质连接,可以定量描述整个大脑的解剖连接模式。结构性脑连接组的发展导致了大量dMRI处理包和网络分析工具箱的出现。然而,基于dMRI数据的全自动网络分析仍然具有挑战性。在这项研究中,我们开发了一个名为“扩散连接组管道”(DCP)的跨平台MATLAB工具箱,用于自动构建大脑结构网络并计算网络的拓扑属性。该工具箱集成了一些开发的软件包,包括 FSL、Diffusion Toolkit、SPM、Camino、MRtrix3和MRIcron。它可以处理从任意数量的参与者那里收集的原始dMRI数据,并且还与来自HCP和英国生物样本库等公共数据集的预处理文件兼容。此外,友好的图形用户界面允许用户配置他们的处理管道,而无需任何编程。为了证明DCP的能力和有效性,使用DCP进行了两次测试。结果表明,DCP可以重现我们之前研究的发现。但是,DCP存在一些局限性,例如依赖 MATLAB 并且无法修复基于度量的加权网络。尽管存在这些局限性,但总体而言,DCP软件为白质网络构建和分析提供了标准化的全自动计算工作流程,有利于推进未来人脑连接组学应用研究。

01
  • BRAIN:用于阿尔茨海默病分类的可解释深度学习框架的开发和验证

    阿尔茨海默症是全世界痴呆症的主要病因,随着人口老龄化,患病负担不断增加,在未来可能会超出社会的诊断和管理能力。目前的诊断方法结合患者病史、神经心理学检测和MRI来识别可能的病例,然而有效的做法仍然应用不一,缺乏敏感性和特异性。在这里,本文报告了一种可解释的深度学习策略,该策略从MRI、年龄、性别和简易智力状况检查量表(mini-mental state examination ,MMSE) 得分等多模式输入中描绘出独特的阿尔茨海默病特征(signatures)。该框架连接了一个完全卷积网络,该网络从局部大脑结构到多层感知器构建了疾病概率的高分辨率图,并对个体阿尔茨海默病风险进行了精确、直观的可视化,以达到准确诊断的目的。该模型使用临床诊断的阿尔茨海默病患者和认知正常的受试者进行训练,这些受试者来自阿尔茨海默病神经影像学倡议(ADNI)数据集(n = 417),并在三个独立的数据集上进行验证:澳大利亚老龄化影像、生物标志物和生活方式研究(AIBL)(n = 382)、弗雷明汉心脏研究(FHS)(n = 102)和国家阿尔茨海默病协调中心(NACC)(n = 582)。使用多模态输入的模型的性能在各数据集中是一致的,ADNI研究、AIBL、FHS研究和NACC数据集的平均曲线下面积值分别为0.996、0.974、0.876和0.954。此外,本文的方法超过了多机构执业神经科医生团队(n = 11)的诊断性能,通过密切跟踪死后组织病理学的损伤脑组织验证了模型和医生团队的预测结果。该框架提供了一种可适应临床的策略,用于使用常规可用的成像技术(如MRI)来生成用于阿尔茨海默病诊断的细微神经成像特征;以及将深度学习与人类疾病的病理生理过程联系起来的通用方法。本研究发表在BRAIN杂志。

    01

    CMRxMotion2022—— 呼吸运动下心脏MRI分析挑战赛

    CMR 成像质量易受呼吸运动伪影的影响。挑战赛目标是评估呼吸运动对 CMR 成像质量的影响,并检查自动分割模型在不同呼吸运动水平下的鲁棒性。心脏磁共振 (CMR) 成像是目前评估心脏结构和功能的金标准模式。基于机器学习的方法在以前的 CMR 挑战(例如 ACDC、M&Ms)中取得了显着的性能。然而,在临床实践中,模型性能受到不一致的成像环境(例如,供应商和协议)、人口变化(正常与病理病例)和意外的人类行为(例如,身体运动)的挑战。通过将训练有素的机器学习模型暴露于“压力测试”中的极端情况来调查潜在的故障模式很有用。迄今为止,模型通用性方面的现有挑战大都集中在供应商可变性和解剖结构变化上,而对人类行为的影响的探索较少。对于 CMR 采集,呼吸运动是主要问题之一。有急性症状的患者不能遵守屏气指令,导致图像质量下降和分析不准确。

    02

    2024年YOLO还可以继续卷 | MedYOLO是怎么从YOLO家族中一步一步走过来的?

    在3D医学影像中进行物体定位的标准方法是使用分割模型对感兴趣的目标进行 Voxel 到 Voxel 的标注。虽然这种方法使模型具有很高的准确性,但也存在一些缺点。为医学影像生成 Voxel 级准确的标注是一个耗时的过程,通常需要多个专家来验证标签的质量。由于标注者之间的变异性,器官或病变的医学术准确的分割可能会出现结构边界不确定的问题,这可能会导致附近组织中包含无关信息或排除相关信息。即使有高质量的标签,分割模型在准确标记目标结构边界时可能会遇到困难,通常需要后处理来填充缺失的内部体积并消除伪预测目标。总之,这使得分割模型的训练成本过高,同时可能会限制下游诊断或分类模型的预测能力。

    01

    BASE:大脑年龄的标准化评估

    摘要:脑年龄是脑健康和相关疾病的一个强有力的生物标志物,最常从Tl加权磁共振图像推断。大脑年龄预测的准确性通常在2-3年的范围内,这主要是通过深度神经网络实现的。然而,由于数据集、评估方法和指标的差异,比较研究结果是困难的。为了解决这个问题,我们引入了脑年龄标准化评估(BASE),其中包括: (i) 一个标准化的Tlw MRI数据集,包括多站点、新的未见站点、测试-重测试和纵向数据;(ii) 相关的评估方案,包括重复的模型训练和基于一套综合的性能指标测量准确性;(iii)基于线性混合效应模型的统计评估框架,用于严格的绩效评估和交叉比较。为了展示BASE,我们综合评估了四种基于深度学习的脑年龄模型,评估了它们在使用多站点、测试-重测试、未见站点和纵向Tlw MRI数据集的场景下的性能。

    00

    SMILE-UHURA Challenge 2023——超高分辨率 7T 磁共振血管造影血管分割

    颅内动脉瘤、动静脉畸形和缺血性卒中的诊断和治疗通常依赖于脑血管系统的高分辨率 3D 图像。3D 形态分析、治疗模拟和治疗指导的使用推动了现有血管形态学和拓扑分析技术的发展和改进,但所有这些技术都强烈依赖于从血管造影图像中准确分割脑血管系统。众所周知,这项任务是一个具有挑战性的问题,由于存在多个小血管、目标结构的内在稀疏性、不均匀的对比分布以及复杂而独特的解剖结构。尽管困难重重,但血管分割仍然是医学图像评估辅助领域中一个潜在的相关问题1.这些分割主要用于脑血管系统的形态学和拓扑学分析,从而可以进行血流模拟2(通常为计算流体动力学 - CFD),以及血管内治疗的部署模拟和指导3(例如,在脑动脉瘤上)。因此,挑战赛集中在获取精确且连接的脑血管分段上,这些分段密集地覆盖了从每个图像的主供血动脉分支的血管。

    01

    Nature子刊:用于阿尔茨海默病痴呆评估的多模态深度学习模型

    在全球范围内,每年有近1000万新发痴呆病例,其中阿尔茨海默病(AD)最为常见。需要新的措施来改善对各种病因导致认知障碍的个体的诊断。作者报告了一个深度学习框架,该框架以连续方式完成多个诊断步骤,以识别具有正常认知(NC)、轻度认知障碍(MCI)、AD和非AD痴呆(nADD)的人。作者展示了一系列能够接受常规收集的临床信息的灵活组合的模型,包括人口统计、病史、神经心理学测试、神经影像学和功能评估。然后,作者表明这些框架与执业神经科医生和神经放射科医生的诊断准确性相比具有优势。最后,作者在计算机视觉中应用可解释性方法,以表明模型检测到的疾病特异性模式可以跟踪整个大脑的退行性变化的不同模式,并与尸检时神经病理学病变的存在密切相关。作者的工作证明了使用既定的医学诊断标准验证计算预测的方法。

    03

    利用视听短片从自然刺激中获得开放的多模式iEEG-fMRI数据集

    在认知神经科学领域,数据共享和开放科学变得越来越重要。虽然许多参与认知神经科学实验的志愿者的数据集现在是公开可用的,但颅内脑电图(iEEG)数据的共享相对较少。iEEG是一种高时间和空间分辨率的记录技术,通过在患者进行罕见的癫痫发作来源定位程序期间进行记录获得。与非侵入性记录技术相比,iEEG具有许多优点,如更好的信噪比和更精确的神经信号。iEEG对于研究高级认知过程(如语言、语义和概念表示)以及开发脑机接口具有重要意义。然而,由于收集困难和道德协议的限制,共享iEEG数据的机会相对较少。共享这些数据将有助于解决科学可重复性问题并促进更充分的数据利用。

    01

    AD分类论文研读(1)

    原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化。该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然图像得到的预训练权重来初始化最先进的VGG和Inception结构,使用少量的MRI图像来重新训练全连接层。采用图像熵选择最翔实的切片训练,通过对OASIS MRI数据集的实验,他们发现,在训练规模比现有技术小近10倍的情况下,他们的性能与现有的基于深层学习的方法相当,甚至更好 介绍 AD的早期诊断可以通过机器学习自动分析MRI图像来实现。从头开始训练一个网络需要大量的资源并且可能结果还不够好,这时候可以选择使用微调一个深度网络来进行转移学习而不是重新训练的方法可能会更好。该研究使用VGG16和Inception两个流行的CNN架构来进行转移学习。结果表明,尽管架构是在不同的领域进行的训练,但是当智能地选择训练数据时,预训练权值对AD诊断仍然具有很好的泛化能力 由于研究的目标是在小训练集上测试转移学习的鲁棒性,因此仅仅随机选择训练数据可能无法为其提供表示MRI足够结构变化的数据集。所以,他们选择通过图像熵提供最大信息量的训练数据。结果表明,通过智能训练选择和转移学习,可以达到与从无到有以最小参数优化训练深层网络相当甚至更好的性能 方法 CNN的核心是从输入图像中抽取特征的卷积层,卷积层中的每个节点与空间连接的神经元的小子集相连,为了减少计算的复杂性,一个最大池化层会紧随着卷积层,多对卷积层和池化层之后会跟着一个全连接层,全连接层学习由卷积层抽取出来的特征的非线性关系,最后是一个soft-max层,它将输出归一化到期望的水准 因为小的数据集可能会使损失函数陷入local minima,该研究使用转移性学习的方法来尽量规避这种情况,即使用大量相同或不同领域的数据来初始化网络,仅使用训练数据来重新训练最后的全连接层 研究中使用两个流行的架构: VGG16

    04

    放射学中基于影像组学和人工智能预测癌症预后

    人工智能(AI)在医学影像诊断中的成功应用使得基于人工智能的癌症成像分析技术开始应用于解决其他更复杂的临床需求。从这个角度出发,我们讨论了基于人工智能利用影像图像解决临床问题的新挑战,如预测多种癌症的预后、预测对各种治疗方式的反应、区分良性治疗混杂因素与进展,肿瘤异常反应的识别以及突变和分子特征的预测等。我们综述了人工智能技术在肿瘤成像中的发展和机遇,重点介绍了基于人工的影像组学方法和基于深度学习的方法,并举例说明了它们在决策支持中的应用。我们还解决了临床应用过程中面临的挑战,包括数据整理和标注、可解释性以及市场监管和报销问题。我们希望通过帮助临床医生理解人工智能的局限性和挑战,以及它作为癌症临床决策支持工具所能提供的机会,为他们揭开影像组学人工智能的神秘面纱。

    02

    Brain:一种用于阿尔兹海默症(AD)分类的可解释的深度学习框架

    阿尔茨海默病是全球范围内痴呆症的主要原因,随着人口老龄化,其发病率负担日益加重,可能超过诊断和管理能力。目前的方法综合了病史、神经心理测试和MRI来识别可能的病例,但有效的做法仍然存在差异,缺乏敏感性和特异性。该研究报告了一种可解释的深度学习策略,其以MRI、年龄、性别和精神状态测试分数的多模态信息作为输入,可以描述独特的阿尔茨海默病特征。我们的框架连接了一个全卷积网络,该网络构建了从局部大脑结构到多层感知器的疾病概率的高分辨率地图,并在准确诊断的过程中生成精确、直观的阿尔茨海默病个体风险可视化。该模型使用阿尔茨海默病神经成像倡议(ADNI)数据集(n = 417)中的临床诊断阿尔茨海默病和认知正常受试者进行训练,并在三个独立队列中进行验证:澳大利亚衰老成像、生物标志物和生活方式旗舰研究(AIBL) (n = 382)、弗雷明汉心脏研究(n = 102)和国家阿尔茨海默病协调中心(NACC) (n = 582)。使用多模态输入的模型在不同数据集上表现一致,ADNI研究、AIBL、Framingham心脏研究和NACC数据集的曲线下平均面积分别为0.996、0.974、0.876和0.954。此外,我们的方法超过了由多机构执业神经学家组成的团队(n = 11)的诊断性能,并且该模型预测的高风险大脑区域密切跟踪了死后的组织病理学结果。该框架提供了一种临床适应性策略,可以使用常规可用的成像技术(如MRI)来生成阿尔茨海默病诊断的细微神经成像信号,以及一种可推广的方法,将深度学习与人类疾病的病理生理过程联系起来。

    03

    MultiNationalCTLiver2024——多国胸部CT肝实质分割

    肝脂肪变性或脂肪肝疾病是一种病理状况,其中肝内脂肪等于或大于肝脏重量的5%。这种情况会增加肝硬化、终末期肝功能衰竭和早期死亡的风险。目前,肝活检是肝脂肪变性的诊断标准,但由于侵入性和发病风险,这种工具受到限制。非侵入性技术被广泛用于解决这一局限性,例如超声 (US)、磁共振成像 (MRI) 和计算机断层扫描 (CT)。虽然 MRI 是一种非侵入性首选,但值得注意的是,平扫CT在测量肝脏脂肪方面具有线性等效性。因此,平扫 CT 已成为一种可行的替代方案,特别是用于检测中度至重度脂肪变性。在影像覆盖范围内,胸部 CT 因其广泛可用性和频繁使用而对评估肝脏脂肪具有重要价值。例如,在现有的肺癌筛查和 COVID-19 患者图像中,平扫胸部 CT 非常实用,尤其是在无法进行腹部 CT 检查的情况下。研究人员已经建立了各种指标来评估 CT 图像上的肝脏脂肪变性,包括肝脾衰减比、肝脾衰减差以及单独肝脏衰减的阈值。值得注意的是,肝脏衰减阈值 ≤ 40 亨斯菲尔德单位 (HU) 可以作为独立指标。放射科医生在圆形感兴趣区域 (ROI) 上测量肝脏衰减以表示整个肝脏的脂肪含量。然而,对于基于人群的研究来说,这种测量需要大量时间和专业知识,这对肝脏疾病的偶然评估和临床相互作用构成了挑战。考虑到脂肪肝的普遍性,数百万处于风险中的个体可能未被发现。因此,在大规模临床研究中,一种自动化工具成为识别这些潜在患者的迫切需要。

    01

    基于MRI医学图像的脑肿瘤分级

    本文对近年来脑磁共振(MR)图像分割和肿瘤分级分类技术进行概述。文章强调了早期发现脑肿瘤及其分级的必要性。在磁共振成像(MRI)中,肿瘤可能看起来很清楚,但医生需要对肿瘤区域进行量化,以便进一步治疗。数字图像处理方法和机器学习有助于医生进一步诊断、治疗、手术前后的决策,从而发挥放射科医生和计算机数据处理之间的协同作用。本文旨在回顾以胶质瘤(包括星形细胞瘤)为靶点的肿瘤患者的脑部MR图像分割和分类的最新进展。阐述了用于肿瘤特征提取和分级的方法,这些方法可以整合到标准临床成像协议中。最后,对该技术的现状、未来发展和趋势进行了评估。本文发表在Biomedical Signal Processing and Control杂志。

    03

    医学图像处理

    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至 定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用[1,2]。目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。

    04

    医学图像处理最全综述「建议收藏」

    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)、超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图像处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用[1,2]。目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。

    02

    最全综述 | 医学图像处理「建议收藏」

    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至 定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用[1,2]。目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。

    01

    大话脑成像之十三:浅谈标准空间模板和空间变换

    不知不觉我们的大话脑成像已经做了十三期了,思影科技也一直在发展多谢各位关注的朋友(简称关友)一直以来的支持,虽然没几个给我赞助个比如几毛钱这种巨款,但能帮我转发一下的也是老铁,都是真爱。那我们今天主要就谈谈磁共振脑影像的重要一步:浅谈标准空间模板和空间变换,希望通过大话系列(建议查历史消息,都看一下,有帮助)可以解答关友们数据处理中的疑惑。 一:标准空间模板 在我们对功能像数据做预处理的时候,其中有一步是把图像normalize到标准空间。为什么要做这一步呢?因为每个被试的脑袋大小、形状都不一样。如果把

    06
    领券