首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从嵌套的Json with list创建pandas DataFrame

从嵌套的 JSON with list 创建 Pandas DataFrame 的方法如下:

  1. 导入所需的库:
代码语言:txt
复制
import pandas as pd
import json
  1. 定义嵌套的 JSON 数据:
代码语言:txt
复制
data = {
    "employees": [
        {
            "name": "John",
            "age": 30,
            "department": "HR"
        },
        {
            "name": "Jane",
            "age": 25,
            "department": "IT"
        },
        {
            "name": "Mike",
            "age": 35,
            "department": "Finance"
        }
    ]
}
  1. 将 JSON 数据转换为 Pandas DataFrame:
代码语言:txt
复制
df = pd.json_normalize(data, "employees")
  1. 打印 DataFrame:
代码语言:txt
复制
print(df)

输出结果:

代码语言:txt
复制
   name  age department
0  John   30         HR
1  Jane   25         IT
2  Mike   35    Finance

这样就成功地从嵌套的 JSON with list 创建了一个 Pandas DataFrame。在这个例子中,"employees" 是嵌套 JSON 数据中的列表名称。使用 pd.json_normalize() 函数可以将嵌套的 JSON 数据展平,并创建一个 DataFrame。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandas DataFrame创建方法

pandas DataFrame增删查改总结系列文章: pandas DaFrame创建方法 pandas DataFrame查询方法 pandas DataFrame行或列删除方法 pandas...DataFrame修改方法 在pandas里,DataFrame是最经常用数据结构,这里总结生成和添加数据方法: ①、把其他格式数据整理到DataFrame中; ②在已有的DataFrame...字典类型读取到DataFrame(dict to DataFrame) 假如我们在做实验时候得到数据是dict类型,为了方便之后数据统计和计算,我们想把它转换为DataFrame,存在很多写法,这里简单介绍常用几种...2. csv文件构建DataFrame(csv to DataFrame) 我们实验时候数据一般比较大,而csv文件是文本格式数据,占用更少存储,所以一般数据来源是csv文件,csv文件中如何构建...当然也可以把这些新数据构建为一个新DataFrame,然后两个DataFrame拼起来。

2.6K20
  • 在Python如何JSON 转换为 Pandas DataFrame

    图片使用 Pandas 读取 JSON 文件在开始之前,让我们了解如何使用Pandasread_json()函数JSON文件中读取数据。...使用 Pandas JSON 字符串创建 DataFrame除了JSON文件中读取数据,我们还可以使用PandasDataFrame()函数JSON字符串创建DataFrame。...以下是JSON字符串创建DataFrame步骤:导入所需库:import pandas as pdimport jsonJSON字符串解析为Python对象:data = json.loads(...使用DataFrame()函数创建DataFrame:df = pd.DataFrame(data)在上述代码中,df是创建Pandas DataFrame对象,其中包含JSON字符串转换而来数据...我们介绍了使用Pandasread_json()函数JSON文件读取数据,以及使用DataFrame()函数JSON字符串创建DataFrame

    1.1K20

    Pandas创建DataFrame对象几种常用方法

    DataFramepandas常用数据类型之一,表示带标签可变二维表格。本文介绍如何创建DataFrame对象,后面会陆续介绍DataFrame对象用法。...pandas as pd 接下来就可以通过多种不同方式来创建DataFrame对象了,为了避免排版混乱影响阅读,直接在我制作PPT上进行截图。...生成后面创建DataFrame对象时用到日期时间索引: ? 创建DataFrame对象,索引为2013年每个月最后一天,列名分别是A、B、C、D,数据为12行4列随机数。 ?...根据字典来创建DataFrame对象,字典“键”作为DataFrame对象列名,其中B列数据是使用pandasdate_range()函数生成日期时间,C列数据来自于使用pandasSeries...除此之外,还可以使用pandasread_excel()和read_csv()函数Excel文件和CSV文件中读取数据并创建DateFrame对象,后面会单独进行介绍。

    3.6K80

    pandas创建DataFrame7种方法小结

    笔者在学习pandas,在学习过程中总结了一下创建dataframe方法,通过查阅资料总结遗下几种方法,如果你有其他方法欢迎留言补充。 练习代码 请点击此处下载 学习环境: ?...第一种: 用Python中字典生成 ? 第二种: 利用指定列内容、索引以及数据 ? 第三种:通过读取文件,可以是json,csv,excel等等。...这个文件笔者放在代码同目录 第四种:用numpy中array生成 ? 第五种: 用numpy中array,但是行和列名都是numpy数据中来 ? 第六种: 利用tuple合并数据 ?...第七种: 利用pandasseries ?...到此这篇关于pandas创建DataFrame7种方法小结文章就介绍到这了,更多相关pandas创建DataFrame内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    87310

    创建DataFrame:10种方式任你选!

    微信公众号:尤而小屋 作者:Peter 编辑:Peter DataFrame数据创建 在上一篇文章中已经介绍过pandas中两种重要类型数据结构:Series类型和DataFrame类型,以及详细讲解了如何创建...本文介绍如何创建DataFrame型数据,也是pandas中最常用数据类型,必须掌握,后续所有连载文章几乎都是基于DataFrame数据操作。...pandas可以通过读取本地Excel、CSV、JSON等文件来创建DataFrame数据 1、读取CSV文件 比如曾经爬到一份成都美食数据,是CSV格式: df2 = pd.read_csv...文件 比如本地当前目录下有一份json格式数据: [008i3skNgy1gqfhixqzllj30jm0x2act.jpg] 通过pandas读取进来: df4 = pd.read_json("information.json...希望本文能够对读者朋友掌握数据帧DataFrame创建有所帮助。 下一篇文章预告:如何DataFrame中查找满足我们需求数据

    4.7K30

    用pythonpandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    那么,如何打开该文件并获取数据框? 参考方案 试试这个: 在文本编辑器中打开cvs文件,并确保将其保存为utf-8格式。...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...– python 我觉得有比这更好方法:import pandas as pd df = pd.DataFrame( [[‘A’, ‘X’, 3], [‘A’, ‘X’, 5], [‘A’, ‘Y’...如何用’-‘解析字符串到节点js本地脚本? – python 我正在使用本地节点js脚本来处理字符串。我陷入了将’-‘字符串解析为本地节点js脚本问题。render.js:#!...为了彼此分离请求,我为每个请求创建了一个随机数,并将其用作记录器名称logger = logging.getLogger(random_number) 日志变成[111] started [222]

    11.7K30

    聊聊多层嵌套json如何解析替换

    前言前阵子承接了2个需求,一个数据脱敏,一个是低代码国际化多语言需求,这两个需求有个共同特点,都是以json形式返回给前端,而且都存在多层嵌套,其中数据脱敏数据格式是比较固定,而低代码json格式存在结构固定和不固定...今天就来聊下多层嵌套json如何解析或者替换多层嵌套json解析1、方法一:循环遍历+利用正则进行解析这种做法相对常规,且解析比较繁琐。...解析方法三,那个悬念做法就是将json与对象映射起来,通过对象来取值4、方法四:先自己发散下,然后看下总结总结本文多层嵌套json解析和替换都提供了几种方案,综合来讲是推荐将json先转对象,通过对象操作...对json替换,推荐使用自定义json序列化注解方式。但这种方式比较适合json结构以及字段是固定方式。...对于低代码,本身json结构是多种多样,如果要后端实现,一种做法,就是将这些json都映射成对象,但因为json结构多种多样,就会导致要映射对象膨胀。

    1.5K30

    AI网络爬虫:用deepseek提取百度文心一言智能体数据

    pageSize=36&pageNo=1&tagId=-99请求方法: GET 状态代码: 200 OK 获取网页响应,这是一个嵌套json数据; 获取json数据中"data"键值,然后获取其中..."plugins"键值,这是一个json数据,提取这个json数据中所有的键写入Excel文件表头 ,提取这个json数据中所有键对应值写入Excel文件列 ; 保存Excel文件; 注意:每一步都输出信息到屏幕...; 每爬取1页数据后暂停5-9秒; 需要对 JSON 数据进行预处理,将嵌套字典和列表转换成适合写入 Excel 格式,比如将嵌套字典转换为字符串; 在较新Pandas版本中,append方法已被弃用...源代码: import requests import pandas as pd import time import json # 请求URL url = "https://agents.baidu.com...创建DataFrame并填充数据 for product in products: product_data = {header: product.get(header, '') for header

    12410

    AI网络爬虫:用deepseek提取百度文心一言智能体数据

    pageSize=36&pageNo=1&tagId=-99请求方法:GET状态代码:200 OK获取网页响应,这是一个嵌套json数据;获取json数据中"data"键值,然后获取其中"plugins..."键值,这是一个json数据,提取这个json数据中所有的键写入Excel文件表头 ,提取这个json数据中所有键对应值写入Excel文件列 ;保存Excel文件;注意:每一步都输出信息到屏幕;...每爬取1页数据后暂停5-9秒;需要对 JSON 数据进行预处理,将嵌套字典和列表转换成适合写入 Excel 格式,比如将嵌套字典转换为字符串;在较新Pandas版本中,append方法已被弃用。...源代码:import requestsimport pandas as pdimport timeimport json# 请求URLurl = "https://agents.baidu.com/lingjing...']# 提取所有产品键作为表头headers = set()for product in products:headers.update(product.keys())# 创建DataFrame并填充数据

    8810
    领券