首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch数据加载的分析

    知乎作者 巽二 https://zhuanlan.zhihu.com/p/100762487 Pytorch数据加载的效率一直让人头痛,此前我介绍过两个方法,实际使用后数据加载的速度还是不够快,我陆续做了一些尝试...1、定位问题 在优化数据加载前,应该先确定是否需要优化数据加载。数据读取并不需要更快,够快就好。...确定数据加载需优化后,需要判断是数据加载的哪一部分慢。...为优化加载速度应该从两个方向下手: 更快的图片解码 更快的数据增强 更强性能的设备,如使用GPU进行数据解码和增强(DALI库) 下面是具体的实验分析,测试环境和数据如下: CPU: Intel(R)...只要我数据加载的够快,GPU就追不上我。加载的部分和pytorch差不多,出来就是gpu的tensor,具体的代码较多,就不放在本文里了。

    1.5K20

    PyTorch入门:(一)数据加载

    前言:本文为学习 PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】时记录的 Jupyter 笔记,部分截图来自视频中的课件。...数据:一堆杂乱是数据,是个垃圾堆 Dataset:提供一种方式去获取数据及其 label ,即在垃圾堆里寻宝,如何获取每个数据及其label,告诉我们总共有多少个数据。...Dataloader: 为网络提供不同的数据形式。...__gettiem__方法用于通过下标(idx)获取一个样本数据 这里采用的是蜜蜂蚂蚁数据集为例,数据集下载链接: https://pan.baidu.com/s/1jZoTmoFzaTLWh4lKBHVbEA...密码: 5suq # 载入图片数据 from PIL import Image img_path = "D:/work/StudyCode/jupyter/dataset_for_pytorch_dataloading

    28320

    如何在Weka中加载CSV机器学习数据

    如何在Weka中加载CSV机器学习数据 在开始建模之前,您必须能够加载(您的)数据。 在这篇文章中,您将了解如何在Weka中加载您的CSV数据集。...整数(Integer)表示没有小数部分数的数值,如5。 标称(Nominal)表示分类数据,如“狗”和“猫”。 字符串(String)表示单词组成的列表,如同这个句子本身。...本节介绍如何在Weka Explorer界面中加载CSV文件。您可以再次使用虹膜数据集,如果您没有加载CSV数据集,则练习。 1.启动Weka GUI Chooser(选择器)。...以另一种格式(如CSV)这样使用不同的分隔符或固定宽度字段来获取数据是很常见的。Excel有强大的工具来加载各种格式的表格数据。使用这些工具,并首先将您的数据加载到Excel中。...CSV File Format 概要 在这篇文章中,您发现了如何将您的CSV数据加载到Weka中进行机器学习。

    8.6K100

    让其加载数据文件 (CSV) 变得更快

    使用 LOAD DATA INFILE 将任何大型 CSV 文件加载到 MySQL 服务器是一个非常耗时的过程,因为它是单线程的,而且也是单个事务,它无法充分利用到多核CPU的处理能力,已成为瓶颈。...现在你可以通过甲骨文的mysqlsh客户端,让其加载数据文件 (CSV) 变得更快!..."/data/mysql/hechunyang1/tmp/sbtest1.csv": 这是要导入的CSV文件的路径。 {}: 这是一个JavaScript对象,包含了导入数据的配置选项。...dialect: "csv-unix": 指定了CSV文件的格式,这里是Unix风格的CSV格式。这个参数告诉MySQL Shell如何解析CSV文件的结构。...sbtest1.csv文件是(1.96 GB,1000万行记录) ,导入耗时: 3 分 16 秒而如果直接使用LOAD DATA INFILE命令导入数据导入耗时:5 分 31 秒

    15510

    使用PyTorch加载数据集:简单指南

    PyTorch是一种流行的深度学习框架,它提供了强大的工具来加载、转换和管理数据集。在本篇博客中,我们将探讨如何使用PyTorch加载数据集,以便于后续的模型训练和评估。...超参数的选择,如Epoch数量和Batch Size,会影响训练的速度和模型的性能,需要根据具体问题进行调整和优化。...DataLoader的参数dataset:这是你要加载的数据集的实例,通常是继承自torch.utils.data.Dataset的自定义数据集类或内置数据集类(如MNIST)。...Update optimizer.step()首先,导入所需的库,包括NumPy和PyTorch。这些库用于处理数据和创建深度学习模型。...该类继承自torch.utils.data.Dataset类,并包含以下方法:init:加载数据文件(假定是CSV格式),将数据分为特征(x_data)和标签(y_data),并存储数据集的长度(len

    39010

    PyTorch 分布式(1) --- 数据加载之DistributedSampler

    [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler...0x00 摘要 0x01 数据加载 1.1 加速途径 1.2 并行处理 1.3 流水线 1.4 GPU 0x02 PyTorch分布式加载 2.1 DDP 2.2 分布式加载 0x03 DistributedSampler...,我们临时插入两篇PyTorch的数据加载(因为字数太长,所以拆成两篇),主要是从分布式的角度进行切入。...1.3 流水线 对于机器学习训练,加载数据可以分为三个步骤: 将数据从磁盘或者分布式存储加载到主机(CPU)。 将数据从主机可分页内存传输到主机固定内存。 将数据从主机固定内存转移到主机GPU。...接下来我们就介绍PyTorch的数据加载,而且主要是从分布式的角度进行切入。 0x02 PyTorch分布式加载 2.1 DDP pytorch为数据分布式训练提供了多种选择。

    1.7K30

    【深度学习入门篇 ③】PyTorch的数据加载

    掌握PyTorch数据通常的处理方法,是构建高效、可扩展模型的关键一步。今天,我们就利用PyTorch高效地处理数据,为模型训练打下坚实基础。...所以,接下来我们来学习pytorch中的数据加载的方法~ Dataset基类介绍 dataset定义了这个数据集的总长度,以及会返回哪些参数,模板: from torch.utils.data import...def __getitem__(self, index): # 当数据集被读取时,返回一个包含数据和标签的元组 数据加载案例 数据来源:http://archive.ics.uci.edu...SMSDataset,这个类能够加载SMS 垃圾短信数据集,并将每条短信及其对应的标签(ham 或 spam)封装为可迭代的形式,以便于后续的数据加载和模型训练。...:torchtext.datasets.IMDB(电影评论文本数据) 我们以Mnist手写数字为例 ,看看pytorch如何加载其中自带的数据集 torchvision.datasets.MNIST

    13410

    图神经网络入门示例:使用PyTorch Geometric 进行节点分类

    基于图的神经网络是强大的模型,可以学习网络中的复杂模式。在本文中,我们将介绍如何为同构图数据构造PyTorch Data对象,然后训练不同类型的神经网络来预测节点所属的类。...创建PyTorch同构数据对象 为了在PyTorch中训练神经网络,我们必须创建一个数据对象。由于我们的数据集包含相同类型的所有节点,我们将创建一个描述同构图的数据对象。...下面就是加载边的数据,也就是建立节点直接的连接 def load_edge_csv(path, src_index_col, dst_index_col, **kwargs): df = pd.read_csv...这表明带有特征和边缘数据的GCN模型能够较好地对节点进行分类。 总结 在本文中,我们将一个CSV文件转换为数据对象,然后使用PyTorch为节点分类任务构建基于图的神经网络。...本文介绍的主要流程是我们训练图神经网络的基本流程,尤其是前期的数据处理和加载,通过扩展本文的基本流程可以应对几乎所有图神经网络问题。 作者:Claudia Ng

    41410
    领券