DQMIS®2022第六届数据质量管理国际峰会将于2023年1月7-10日以线上直播的形式举办,以“数据隐擎,提质安航”为峰会主题,探讨与研究数据要素的全周期管理,企业数据产品打造,如何通过隐私计算技术保护数据,数据溯源及数据确权,如何提高数据质量为数据产品增值,如何基于数据安全技术实现数据要素的安全流通与交易。 本届峰会开设一场高端闭门论坛,一场主论坛,五场分论坛。闭门论坛将聚集跨界别不同行业顶级专家聚焦探讨核心的数据发展问题,其会议成果将在峰会主论坛发布。主论坛将由院士领衔行业前沿趋势解读,涵盖数据质量
随着三网融合、移动互联网、云计算、物联网的快速发展,数据的生产者、生产环节都在急速攀升,随之快速产生的数据呈指数级增长。在信息和网络技术飞速发展的今天,越来越多的企业业务和社会活动实现了数字化。全球最大的零售商沃尔玛,每天通过分布在世界各地的6000多家商店向全球客户销售超过2.67亿件商品,每小时获得2.5PB的交易数据。而物联网下的传感数据也慢慢发展成了大数据的主要来源之一。有研究估计,2015年全球数据量为8ZB,而到2020年则高达35.2ZB,是2015年数据量的44倍之多。此外,随着移动互联网、Web2.0技术和电子商务技术的飞速发展,大量的多媒体内容在指数增长的数据量中发挥着重要作用。
构建数据工程师能力模型并实战八大企业级项目,需要综合考虑数据工程的多个方面,包括但不限于数据分析技术、数据管理、数据质量管理、以及如何将这些技术应用于实际的企业级项目中。以下是基于我搜索到的资料,对构建数据工程师能力模型和实战项目的建议:
6月24日,在第四届世界智能大会城市能源大数据高峰论坛上,发布了国内首个城市能源大数据发展白皮书--《天津城市能源大数据发展白皮书2020》。
某大型集成电路企业是一家集芯片设计、工艺研发、晶圆生产与测试、销售服务于一体的半导体存储器企业,为全球提供先进的存储产品和解决方案,广泛应用于移动通信、计算机、数据中心和消费电子领域。该企业在数据管理系统和研制管理体系的控制下,设计、工艺、制造、试验、售后服务等环节都产生了大量的数据。在管理信息化、工程信息化的建设过程中,为减少信息孤岛,数据集成与共享不可逾越,不同系统间的数据正确性、一致性变得尤为重要。
开源数据质量管理工具预研——Griffin VS Deequ VS Great expectations VS Qualitis。
数字经济正重塑着经济与社会,以工业互联网、区块链、人工智能、5G、大数据等新一代数字技术持续发展突破,奠定数字化转型的坚实基础,企业决策开始从业务驱动向数据驱动转变,而数据治理成为政企数字化转型筑基的关键,是当下数据产业生态系统的主流,历经多年发展已经在各个领域逐步深化落地,同时衍生了不少优秀研究及成功实践。 在此背景下,为汇聚数据治理与数据质量领域前沿思想和实践经验,推动中国数据治理技术与大数据生态环境优化发展。数据质量管理智库洞悉行业发展趋势,汇集DQMIS®峰会5年热点话题出版成书,倾力打造数据行业
数据要素,是过去一年以来最热的一个词,2020年3月30号,中共中央,国务院发布了《关于构建更加完善的要素市场化配置体制机制的意见》中明确提出了把数据作为生产要素进入市场化配置,这是在国家层面大力扶持数字经济,作为中国未来发展重要举措之一。从银保监会的数据治理指引及更严格的数据管控,到市场的数据霸权垄断监管;数据交易市场在中国大地如雨后春笋般的迸发,诸如数据标注等依托数据要素的新业态,新商业模式的涌现,经过一年多的实践和沉淀,蓦然回首,我们发现妨碍我们进一步跃升的是数据的质量,以及提升数据质量的难,和无法承
在数字化转型的背景下,数据是一把双刃剑,它能给企业带来业务价值的同时也是组织最大的风险来源。糟糕的数据质量常常意味着糟糕的业务决策,将直接导致数据统计分析不准确、监管业务难、高层领导难以决策等问题。
主讲嘉宾:刘晨 主持人:中关村大数据产业联盟 副秘书长 陈新河 承办:中关村大数据产业联盟 嘉宾介绍: 刘晨:广州利为软件合伙人,从事数据治理软件产品研发与咨询服务。清华大学电子系本科、经管学院MBA。拥有数据治理领域六年以上从业经验。国际数据管理协会中国分会(DAMA China)核心工作组成员,国际信息和数据质量协会(IAIDQ)会员。译著有《DAMA数据管理知识体系指南》,编写《大型企业信息化工程项目管理实战》数据管理章节。 以下为分享实景全文: 主题汇报人: 刘晨:大家好,我是刘晨,来自于利为软件
提到格里芬—Griffin,大家想到更多的是篮球明星或者战队名,但在大数据领域Apache Griffin(以下简称Griffin)可是数据质量领域响当当的一哥。先说一句:Griffin是大数据质量监控领域唯一的Apache项目,懂了吧。
大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大打折扣,甚至根本不可用,不敢用,因此,数据治理是大数据时代我们用好海量数据的必然选择。
是不是感觉漫画中的场景很熟悉?没错,这种场景几乎每天都在企业中重复上演。 一、数据质量问题的危害 当前越来越多的企业认识到了数据的重要性,数据仓库、大数据平台的建设如雨后春笋。但数据是一把双刃剑,它能
关于数据质量管理,可能与大部分人没有太大的关系。虽然,市面上有很多的公司在进行数据的挖掘、分析方面业务的工作,但是关于数据质量管理方面的公司真的是屈指可数。 由于本人所在的公司主要是为了解决发改委遇到
即数据本身的管理,对于数据本身,基于数据仓库,我们做了数据的分层、数据域的划分、基于维度建模的架构、命名规范、对需要共享的数据建立统一视图和集中管理等,这些都是属于这个主数据管理的范围。
在前面的系列文章中,我讲述了如何用一些大数据的测试方法来保障数据质量,那么还有其他方法吗?当然有,即数据质量管理的方式来保障数据质量。今天先从数据质量管理流程聊起,来看看如何更加全面、系统的管理数据质量,从而使数据变得更有价值,希望对大家有所帮助。
随着大数据时代的到来,流动的数据已经成为连接全世界的载体,也成为促进经济社会发展、便利人们产生生活的源动力。伴随着数据的流动,尤其是为了解决流动过程中产生的一系列问题,”数据治理“流行起来。而要了解数据治理及数据质量,还得从数据、数据治理、数据质量这些基本概念说起。
2020年眼看着已经过了一半了要,各种年中工作汇报也火热展开了,给领导汇报工作时,你是否对报告的基础数据质量产生过担忧,担心质量不达标呢?
正如大家所知,大数据建设的目标是为了融合组织数据,增加组织的洞察力和竞争力,实现业务创新和产业升级。而提高数据质量是为了巩固大数据建设成果,解决大数据建设成果不能满足业务要求的问题。并且,数据质量问题不仅仅是一个技术问题,它也可能出现在业务和管理的过程中。所以,要想提高数据质量,就必须懂行业、懂组织、懂业务。当然,正如“数据博士”Jim barker 所说,我们可以简单地通过引入一些工具和规则就可以解决 80% 的问题,也可以引入一个复杂的系统工程来解决 100% 的质量问题,取决于我们希望达到什么样的质量标准。
数据治理(DG)是对企业中使用的数据的可用性,可用性,完整性和安全性的整体管理。健全的数据治理计划包括理事机构或理事会,一套明确的程序和执行这些程序的计划。企业受益于数据治理,因为它可确保数据的一致性和可信赖性。这一点至关重要,因为越来越多的组织依靠数据来制定业务决策,优化运营,创建新产品和服务,并提高盈利能力。
股份制改革对我国银行业来说只是一个开始,企业在风险管理、创造价值等方面还有很长的路要走。风险管理要求提供精准的数据模型、创造价值要求充分银行数据资产,这是数据治理的外部推动因素。此外,随着第三次工业革命的到来,银行业也需要进入定制化时代,以更低的成本,生产多样化的金融产品,从而满足不同顾客的不同需求。对数据本身而言,业务发展加快了数据膨胀的速度,也带来了数据不一致等问题,业务部门的频繁增加和剥离同样会对数据治理提出挑战。这些日益复杂的内外因决定了我国银行业对数据治理的超高标准要求,而目前对应的经验能力却稍显薄弱。
数据质量管理是组织变革管理中一项关键的支撑流程,包括整合数据源、创建一致的数据副本、交互提供数据或整合数据。数据清洗不能解决数据缺陷的根本原因。
在大数据早期,做数据治理最主要的目的,就是为了提升数据质量,让报表、分析、应用更加准确。到今天,虽然数据治理的范畴扩大了很多,我们开始讲数据资产管理、知识图谱、自动化的数据治理等等概念,但是提升数据的质量,依然是数据治理最重要的目标之一。因为数据要能发挥其价值,关键在于其数据的质量的高低,高质量的数据是一切数据应用的基础。在数据质量不高的环境下,做数据分析可谓问题重重,数据质量问题已经严重影响了组织业务的正常运营。通过科学的数据质量管理,持续地提升数据质量,已经成为组织内刻不容缓的优先任务。
背景 数据,已经成为互联网企业非常依赖的新型重要资产。数据质量的好坏直接关系到信息的精准度,也影响到企业的生存和竞争力。Michael Hammer(《Reengineering the Corporation》一书的作者)曾说过,看起来不起眼的数据质量问题,实际上是拆散业务流程的重要标志。 数据质量管理是测度、提高和验证质量,以及整合组织数据的方法等一套处理准则,而体量大、速度快和多样性的特点,决定了大数据质量所需的处理,有别于传统信息治理计划的质量管理方式。 本文基于美团点评大数据平台,通过对数据流转
随着数据呈爆发式地增长,多数传统企业也开始走上了数字化转型的道路。与此同时,数据中蕴藏的商业价值也逐渐被人们挖掘出来。而大数据类的项目都有一个特点:都以数据为核心。数据将作为产生业务价值和实现业务目标的基石,因此,数据质量就成为影响这类项目的一个极其重要的因素。 本文选自《数据治理:工业企业数字化转型之道》一书,将在技术基础上,从数据质量管理的技术指标和业务指标两大部分对数据质量评估进行深入的分析。 一本数据从业者都需要的工作指南 ▼ 扫码了解详情 ▼ 数据质量评估 互联网、智能手机、可穿戴设备及智能
大数据是为了解决复杂的企业优化问题。为了充分利用大数据,我们必须认识到,数据是一个重要的企业资产,因为数据是互联网经济的命脉。今天的组织依靠数据科学可以做出更明智和更有效的决策,通过创新产品和运营效率创造竞争优势。
点击标题下「大数据文摘」可快捷关注 有些人认为,“大数据”这一词汇不过是企业营销时的大肆炒作。但即使是那些接受大数据概念的人,也需要消除某些大数据误区。 全球领先的信息技术研究和咨询公司Gartner指出,大肆宣传大数据概念,使企业在选择适当的行动方案时,受到更多困扰,但对消除一些仍存在的误区却毫无帮助。 例如,80%的数据是非结构化的,这是错误的;又如高级分析功能只是更复杂形式的普通分析,分析公司Gartner指出,这也是不正确的。 Gartner公司在已发布的两篇报告《大数据对分析功能影响中的主要误区
上月,中共中央、国务院印发《数字中国建设整体布局规划》(以下简称《规划》,点击查看),并发出通知,要求各地区各部门结合实际认真贯彻落实。 该《规划》的发布引起不小轰动,大家看到了国家对数字中国建设的重视,也对未来数字化建设的落地有了明确的方向! 企业数字化转型势在必行,而如何构建科学、安全、高效、有序的数据治理体系成为了企业数字化转型的重大命题。 数据治理 是当下企业谋求竞争优势和向高端发展进程中难得的一个机遇,同时也是一个无可回避的挑战。 博文视点学院联合华矩科技推出《数据治理大讲堂》系列课程,4大
又到了本周的开源项目推荐。数据质量是企业进行数据治理非常重要的一个环节,高质量的数据对管理决策,业务支撑都有非常重要的作用。 只有持续的数据质量改进才能推动数据治理体系的完善,差劲的数据质量就如同顽固的疾病一样,如果不能得到及时的改善,最终可能会导致重大的问题。 近几年来,管理数据质量的工具层出不穷,但是能够全面的对企业数据质量进行分析与洞察的工具并不多见。 那么,有没有好用的开源的数据质量项目呢? 今天为大家推荐的开源项目,就是一个极为优秀的数据质量检查工具,开源的数据质量管理项目。让我们一起来看看吧~
大数据包含太多东西了,从数据仓库、hadoop、hdfs、hive到spark、kafka等,每个要详细的说都会要很久的,所以我不认为这里面有一个答案是合理的。
大数据技术应用于大数据系统端到端的各个环节,包括数据接入、数据预处理、数据存储、数据处理、数据可视化、数据治理,以及安全和隐私保护等。
导读:我们现在处在一个新的时代:商业成功取决于比以前更快的从更多的系统和用户中获取可信任的数据。要想在这个时代成功,你必须确保质量数据在更多的系统中传播流畅,是高度可伸缩的,并且由业务用户监控和管理。通过本文详细的讲解,你可以创建并启动一个可以支持你现有业务计划、还可以轻松扩展满足未来需求的数据质量策略。 数据质量曾经被认为仅仅是IT部门的责任,或者是在某一次数据迁移中才需要被考虑到。而现在,日常业务流程、你的组织里所有的系统和数据都需要考虑数据质量。很多组织仍然让一些不懂在商业中如何使用这些数据的工
导读:本期“谁是数据英雄?传统企业大数据应用案例”给大家介绍《 长城资产:数据管控驱动管理增值 》。在外部监管和内部需求的共同驱动下,资产管理行业的数据治理体系建设势在必行。作为四大国家级金融资产管理
大家好,我是独孤风,一位曾经的港口煤炭工人,目前在某国企任大数据负责人,公众号大数据流动主理人。
在中国制造2025战略决策的指引下,制造业都在智能制造领域探索自身的发展路径,希望能够跟上数据发展的浪潮,以数据驱动业务快速提升企业竞争力。那么面对企业海量数据,如何找到数据管理的切入点呢?分析近些年我所接触到的制造业数据项目中,制造业在数据管理方面起步较晚,企业自身已经意识到数据管理的重要性,并根据自身发展情况不同而选择适合自己的建设目标,大多数企业纷纷选择主数据管理来入手。 制造业主数据有着鲜明的特点,首先主数据分布在设计、工艺、生产过程中的多个业务部门中、在众多异构系统中使用、主数据本身具备多学科的特
说实在的,人工智能这个概念有些过于高大上,从大的方面包括深度学习、机器学习、强化学习等等,而深度学习又包括图像识别、语音识别、自然语言处理、预测分析;机器学习则包括监督学习、无监督学习、半监督学习,监督学习又细分为回归、分类、决策树等等。理论上人工智能什么都能做,什么都能迎合的上。
当前数字化转型大背景下,许多企业都在全力推动数据资产的落地实施,逐步开始汇聚数据、管理数据、利用数据、运营数据,创造数据价值。那么不同行业的数据资产管理都分别具有什么样的特点特色呢?企业的数据资产实施演进一般具有哪些发展阶段呢?体量不同、行业不同、组织架构不同的企业又该如何选择适合自己的实施抓手呢?以下内容将为大家呈现不一样的解答。
我们现在处在一个新的时代:商业成功取决于比以前更快的从更多的系统和用户中获取可信任的数据。这个新时代的核心是大数据,它引进了新技术、新数据源、新数据类型,可以让你更了解顾客、竞争者的关联信息以及你从没想过的经营活动。 问题是这些信息常常充满了错误,那些即刻需要信息的人也不能马上获取它们。无论你负责技术策略还是信息策略,你都需要保证可以实时获取可靠的信息,这样你就可以比竞争者更快的做出准确的决策。否则,你就很容易被其他公司甩在后面。 数据质量曾经被认为仅仅是IT部门的责任,或者是在某一次数据迁移中才需要被考虑
场景描述:本文围绕什么是数据中台,中台怎么建设,中台产品怎么选择,案例分析介绍企业级数据中台的建设。
在进行数据质量提升前,首先需要探究数据质量问题产生的原因。一般数据质量问题的原因与数据标准的三方面组成是一致的,即管理层面、业务层面、技术层面。
写在前面: 博主是一名软件工程系大数据应用开发专业大二的学生,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一
信息建模描述了理解与企业相关的数据、流程和规则所需的元数据(图1)。信息建模有三个主要领域:
本文围绕什么是数据中台,中台怎么建设,中台产品怎么选择,案例分析介绍企业级数据中台的建设。
搜索一下“HR+大数据”,可以轻松得到几百万条记录,可见大数据在HR领域并不是一个陌生的话题,遗憾的是,热度有余而深度不足。北大光华的穆胜博士在其写的《大数据为何走不进人力资源管理?》一文中提出“HR
数据标准是保证数据的内外部使用和交换的一致性、准确性的规范性约束。通俗来讲,数据标准是对数据的命名、类型、长度、业务含义、计算口径和归属等定义的统一规范。,并产出最终的数据质量报告。
领取专属 10元无门槛券
手把手带您无忧上云