如何对人员流动加以管控,如何准确识别潜在的传染风险,成为摆在各地防控部门面前的难题。
在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例子,来为大家说明白—数据挖掘、
这样理解,就简单多啦! 导读:在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例
(1)点播VOD短视频播放器小程序插件支持申请免费试用 14 天。用户可以无需购买,先进行证书校验,确认是否能够使用
随着新年的倒计时,2019年终于来临。过去的一年里,腾讯云直播不断地进行功能的迭代更新和技术的升级,竭力为客户提供更加优质、稳定、安全的直播服务。 感谢过去一年云直播客户的支持和理解,在此腾讯云特意在新年伊始献上大礼: 流量套餐优惠享不停 100GB套餐 1年 有效期 24.6 元/年 原价30元/年 支持一场约100人在线的活动分享(约4h) 500GB套餐 1年 有效期 118 元/年 原价148元/年 支持一场约500人在线的小型活动(约4h) 1TB套餐 1年 有效期
2018已经过去,新年越来越近。在过去的一年里,腾讯云直播不断地进行功能的迭代更新和技术的升级,竭力为客户提供更加优质、稳定、安全的直播服务。 感谢云直播客户一直以来的支持和理解,腾讯云在此献上直播降价大礼: 流量套餐优惠享不停 100GB套餐 1年 有效期 24.6 元/年 原价30元/年 支持一场约100人在线的活动分享(约4h) 500GB套餐 1年 有效期 118 元/年 原价148元/年 支持一场约500人在线的小型活动(约4h) 1TB套餐 1年 有效期 236
钛媒体注:大数据太火了,被广泛应用到各行各业,而近阶段又有着明显的过热迹象。大数据到底是一个营销词汇,还是一个方法论?本文作者老李正是一家大数据服务提供商的资深员工,他所做的项目就是针对不同行业进行大数据分析。他认为,关于大数据你首先必须有一个基本认识,那就是“大量的数据并非一定具有价值”。另外,数据统计并不等同于大数据,数据统计和大数据的区别就在于人工智能。长文慎入: 近两年来,“大数据”被广泛应用到各行各业,而近阶段又有着明显的过热迹象。从央视的春运迁徙图到姚晨看到微博数据的惊呼;从两会期间的两会大数据
<数据猿导读> 在数据猿、星河互联、球秘APP共同举办的《体育大数据·巅峰思享会》上,我奥篮球的创始人林晓勇表示,三到五年之后,中国篮球赛事大数据准备工作、基础工作、数据采集工作都是会实现的,信息化一
近两年来,“大数据”被广泛应用到各行各业,而近阶段又有着明显的过热迹象。从央视的春运迁徙图到姚晨看到微博数据的惊呼;从两会期间的两会大数据,到《星星》都叫兽的高低领毛衣,“大数据”被人们推到了一个前所未有的高度,同时也从一个高精尖的科研方向变成了一个世人皆知的营销词汇。
相比于其他体育运动,足球的数据统计和分析工作开展得很晚,而且鉴于比赛的特殊性也没有太多的经验可供参考。不过,随着大数据时代的到来,这种趋势越来越明显,我们需要做的不仅是搜集数据,而且需要更好的分析数据
什么是大数据? 尽管“大数据”这个词直到最近才受到人们的高度关注,但早在1980年,著名未来学家托夫勒在其所著的《第三次浪潮》中就热情地将“大数据”称颂为 “第三次浪潮的华彩乐章”。《自然》杂志在2008年9月推出了名为“大数据”的封面专栏。从2009年开始“大数据”才成为互联网技术行业中的热门词汇。 百度百科对大数据的定义是这样的:大数据(big data)或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
以互联网行业来说,在移动互联网发展比较成熟的现在,流量见顶,红利消失,企业竞争日趋惨烈,获取新增用户的成本日益增高。很多企业开始意识到不能一味的通过补贴、价格战、广告投放这种简单粗暴的方式抢占市场,这样的运作模式很难长时间维系。而通过精细化和数据化运营来降低成本、提升效率、最大化单用户价值的理念逐渐被越来越多的企业所接受。精细化和数据化运营的前提是要建立起一套完善的数据指标体系,借助这个数据指标体系企业可以有多方面的用途:
站长以前介绍过这个开源项目,最近又有人在问,索性挂在Dotnet9网站上,方便大家在线浏览,先声明,模板来自下面的仓库:
来源:数据猿 编译:jinyunan 如今,大数据早已是科技行业的热门话题,大数据也从以往被热炒到了被重视,包括政府在内的各行业机构与企业都已大力发展大数据产业,都希望能在“得数据者得天下”的未来提前布局并占有一席之地。 数据猿注:继政府推动各省市成立大数据管理局、大数据交易所等机构之后,在10月份,国务院又出台了运用大数据各部委行动时间表,大数据已提升到国家战略层面并“强制限期”各地方政府促进大数据的发展运用,大数据企业也如雨后春笋般涌现。小猿想说,发家致富的机会真的来啦,大家撸起袖子干吧! 有统计报
这不,立马安排。特地给大家准备了20张精美、炫酷而且十分实用的可视化大屏模板,涉及机械、加工、零售、银行、交通等行业。
在我做开发的这些年,让我很头痛的一类问题,不是线上故障,而是数据异常,不知道有没有程序员跟我感同身受。
美图拥有十亿级用户,每天有数千万用户在使用美图的各个产品,从而积累了大量的用户数据。
数据可视化源码已上传到网盘,关注【青年码农】,后台回复【大屏源码】,提供网盘下载。
可视化大屏不再只是电影里奇幻的画面,而是被实实在在地应用在政府、商业、金融、制造等各个行业的业务场景中,切切实实地实现着大数据的价值。
随着移动互联网市场快速发展,以往“跑马圈地”式的粗犷运营时代已成为过去时。大环境的改变,也导致移动端的数据统计分析在产品的研发、决策、运营等方面起着越来越重要的作用,“精细化运营”一时间成为热点词——从大厂到创业团队,无论是自建数据统计系统还是借助于第三方,市场对于简单易用、稳定可靠数据统计方案的需求从未衰减过。
应对大数据时代的挑战,国内学术界最近动静不小。中科院院士马志明说,上月他每周都在见证一家全新的、和大数据相关的研究机构或研究平台诞生。从中科院系统内部培育的重点实验室到国家基金委的“双清论坛”,再到日前上海财经大学携手国家统计局成立“大数据统计科学中心”—一个信号已经非常清晰:对大数据的深挖和系统研究,已是板上钉钉的国家战略。 “在大数据时代,数据科学家和数据工程师非常紧缺。”根据一些机构的测算,未来5年,国内各行各业需要的大数据专业人才,缺口将高达1000万左右。 对海量数据信息的处理手段还远不
一般谈到大数据技术的时候,毫无疑问,都会想到大数据定义的4V,以及结构化、非结构化数据处理、数据挖掘,以及高性能并行计算等。 不过一说到大数据应用,一般就显得青黄不接了,原因是什么?因为我们都在思考某些应用“点”,每一个大家数的出来的应用案例,请问是不是都显得较为独立,在业务中属于某一个点? 如果我们能把大数据应用能抽象出一个大类,甚至某一个行业细分,那么我们就不再迷茫和彷徨,我们也更不再在商业模式上纠结不清! 属性的总结 大数据应用方式(包括传统的应用)如下: 1. 数据统计,结果或给决策层看,或给
本文为作者投稿,作者简介:诸葛子房,曾供职于京东,现就职于BAT,在大数据领域有多年实践经验
随着大数据时代的来临,如何帮助用户从大量信息中迅速获得对自己有用的信息成为众多商家的重要任务,个性化推荐系统应运而生。个性化推荐系统以海量数据挖掘为基础,引导用户发现自己的信息需求,现已广泛应用于很多领域。传统的个性化推荐系统,采用定期对数据进行分析的做法来更新模型。由于是定期更新,推荐模型无法保持实时性,对用户当前的行为推荐结果可能不会非常精准。实时个性化推荐实时分析用户产生的数据,可以更准确地为用户进行推荐,同时根据实时的推荐结果进行反馈,更好地改进推荐模型。 腾讯大数据平台部和北京大学网络所崔斌教授研
百度糯米上线大数据产品“店铺统计”,解决餐饮商家的运营难题 在2016百度糯米餐饮生态峰会上,百度糯米宣布上线了大数据产品——“店铺统计”。据悉,该产品可通过大数据技术分析,在商家的店铺页上直观展现商
小米公司正式成立于2010 年4 月,是一家专注于高端智能手机、互联网电视以及智能家居生态链建设的创新型科技企业。
引言 2016年已离我们远去,在短短的一年时间中,移动市场发生了极大的变化。 在所谓“成熟”的移动市场上,品牌格局重新洗牌,昔日王者不再,黑马异军突起。 腾讯大数据在此发布2016年Q4移动行业数据报告,望诸君管中窥豹、见仁见义。 腾讯大数据2016年Q4季移动行业数据报告将分为以下3个章节:移动设备、品牌战局和用户使用; 移动设备篇从整体上看iOS与Android的设备发展趋势; 品牌战局则细分至各大品牌,分析其现有活跃设备市场份额与用户特征; 用户使用选取了几个有趣的角度,分析用户的设备习惯与使用时间分
实时流计算服务(Cloud Stream Service,简称CS),是运行在公有云上的实时流式大数据分析服务,全托管的方式用户无需感知计算集群,只需聚焦于Stream SQL业务,即时执行作业,完全兼容Apache Flink(1.5.3版本)API和Apache Spark(2.2.1版本)API。
业要实施大数据战略,需要从五大方面规划:1.制定大数据规划找准切入点;2.强化大数据领导力设立CDO;3.设计合理的大数据组织结构;4.搭建富有执行力的大数据团队;5.用制度和文化保障大数据实施。 本文作者: 傅志华/ 360公司大数据中心副总经理 制定大数据规划找准切入点 成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产。大数据规划第一个核心要素是应用场景的规划,企业需要确定不同业务投入大数据的优先级,确定大数据的切入点。在企业中,大数据应用场景包括业务运营监控、用户洞察与
大数据给互联网带来的是空前的信息大爆炸,它不仅改变了互联网的数据应用模式,还将深深影响着人们的生产生活。深处在大数据时代中,人们认识到大数据已经将数据分析的认识从“向后分析”变成“向前分析”,改变了人们的思维模式,但同时大数据也向我们提出了数据采集、分析和使用等难题。在解决了这些难题的同时,也意味着大数据开始向纵深方向发展。 一、数据统计分析的内涵 近年来,包括互联网、物联网、云计算等信息技术在内的IT通信业迅速发展,数据的快速增长成了许多行业共同面对的严峻挑战和宝贵机遇,因此现代信息社会已经进入了大数据时
最近和几个同事聊了下关于数据的一些问题,有一个问题引起了我的好奇。那就是数仓体系和大数据体系的数据质量差异。
诉讼案件会产生大量文档,而这些文档蕴藏的数据对此后同类型案件的代理和审判具有很高的参考价值。法律业大数据的时代已悄然到来。天同律师事务所是一个专注于商事诉讼的小律所,却希望通过实施诉讼大数据的战略,从
就是知道模型,也就是模型一些参数都知道,能把模型确定下来。 好比知道是正态分布,又知道参数 μ , σ \mu,\sigma μ,σ,然后得到的概率。
面对新技术,法律专业人士通常是最保守的人群之一,但大数据时代,律师和律师事务所要想脱颖而出,卓尔不群,尽快采用大数据技术是不二之选。 2008年金融危机以来,律师行业经历了长期的低潮,越来越多的企业客户无法负担高昂的律师费用,导致律所裁员不断,规模日渐萎缩。而那些行业领先的律所开始推崇“精益企业”,收费模式也从过去的固定费率调整为按需服务。 但是“精益律所”并非根本的解决方案,律师事务所还必须借助大数据大幅降低信息处理成本,提高数字竞争力。近日GigaOM专栏作者Derrick Harris撰文指出,律师事
“个数”是“个推”旗下面向 APP 开发者提供数据统计分析的产品。“个数”通过可视化埋点技术及大数据分析能力从用户属性、渠道质量、行业对比等维度对 APP 进行全面的统计分析。
现在已经不是像网络游戏开局拿着一根小木棍打天下的时代了,这将是一场武装到牙齿的较量,对于各类“装备”的驾驭能力有时候甚至可以决定胜负。
4、应用、方式和收益 4.1数据统计是大数据的最直接应用 数据统计是大数据应用的最直观的形式,数据统计在企业中常被称为商业智能(BI, Business Intelligence)系统,使用者们通过观
Flink是一款非常优秀的流式计算框架,而ClickHouse是一款非常优秀的OLAP类引擎,它们是各自所处领域的佼佼者,这一点是毋庸置疑的。Flink除了各种流式计算场景外也必然可以用于流式统计,ClickHouse同样也可以用于流式统计,但我不认为它们是优秀的流式统计工具。XL-Lighthouse在流式统计这个细分场景内足以完胜Flink和ClickHouse。在企业数据化运营领域,面对繁杂的流式数据统计需求,以Flink和ClickHouse以及很多同类技术方案为核心的架构设计不能算是一种较为优秀的解决方案。
In大数据时代,跟随相关技术的日新月异与成熟,在这样的背景下,前端和后端又能玩出什么新花样呢?在18年的双11活动中,天猫的可视化大屏可谓玩花了技术控们的眼睛。
美图拥有十亿级用户,每天有数千万用户在使用美图的各个产品,从而积累了大量的用户数据。 随着 APP 的不断迭代与用户的快速膨胀,产品、运营、市场等越来越依赖于数据来优化产品功能、跟踪运营效果,分析用户
认证链接 腾讯云CloudLite认证 V 加开发者认证 目录 在线学习 云视频 cloudlite 产品认证课程 腾讯云实时音视频概述 腾讯云实时音视频入门 腾讯云实时音视频的使用 动手实践 服务端上传 证书展示 [证书] 知识点摘记 云上直播平台:上线快灵活计费,无需运维,开发成本低,全球加速功能完善 云直播CSS:低时延,超高画质,大并发访问量 云直播服务:标准直播,慢直播,快直播 推流方案的选择:手机直播,传统专业视频设备直播,游戏直播 云直播控制台:概览,域名管理,流管理,功能模板,统计分析,日志
顾名思义大数据是一个以数据为核心的产业。大数据产业生成流程从数据的生命周期的传导和演变上可分为这几个部分:数据收集、数据储存、数据建模、数据分析、数据变现。
云计算和大数据现状不说了 学习BigData和Cloud,需要学习这些基本的技能与知识: 大数据Java基础 大数据Linux基础 大数据网络基础, Python网络编程开发, 大数据统计学基础, 大
现在“大数据”非常的火。我们看到有各种相关的技术文章和软件推出,但是,当我们面对真正日常的业务时,却往往觉得无法利用上“大数据”。初步想来,好像原因有两个:第一个原因是,我们的数据往往看起来不够“大”,导致我们似乎分析不出什么来。第二个原因是,大数据往往其作用在于“预测”,比如给用户推荐商品,就是通过预测用户的消费倾向;给用户推送广告,局势通过预测用户的浏览习惯。然而很多时候我们要的并不是预测,而是弄明白用户本身的情况。 对于业务中产生的数据,一般我们期望有几种用途:一是通过统计,用来做成分析报告,帮助人
亚马逊CTO维尔纳•沃格尔(Werner Vogels)表示,大数据能够在方方面面改善我们的生活,带来大美好,但也会导致一些大问题。 机器们在开始接管一切,物联网的未来已经到来。在令人眼花缭乱的各种应用程序当中,机器在源源不断地产生数据,其中大部分推送到云端进行存储、处理和分析。然而,正如亚马逊首席技术官沃格尔向MongoDB World大会与会者所说的,我们正在产生的“大数据”所带来的结果并不全都是我们喜闻乐见的。 大数据?了不起 当下的数据之所以很大,并不是因为它存在于俨然庞然大物的大型主机或者巨大
作者:konradliu,腾讯CSIG区块链产品经理 |导语 大数据时代,数据源源不断产生并且汇集,数据已经成为企业间竞争的关键和影响国家竞争力的重要因素,大规模数据汇聚导致数据垄断困境的出现,进一步,使数据被不合理的分配与享用,然而,大规模数据收集也带来严峻的隐私泄露、数据滥用和数据决策不可信等问题,对传统的数据治理提出了新的挑战,数据隐私如何保护、数据交易和共享中如何可信传输、数据所有权与使用权如何厘清、数据价值如何合理定价等问题如何解决,并使数据得到正确和规范的使用是决定大数据继续发挥价值的关键,也
领取专属 10元无门槛券
手把手带您无忧上云