首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

李子柒一年能赚多少钱数据量化给你看

下面一起挖一下,拥有这么多粉丝的李子柒,一年能赚多少钱 油管的广告分成 油管发视频是有广告分成的,一般千次播放量在0.6-1.4美元,直接上Influencer可以看到李子柒的收入预估 ?...根据以上报价,在抖音平台,一万粉丝的广告报价在184-945之间,取个中位数的话是500,按照这个数据,在抖音拥有3082万粉丝的李子柒,接一个广告的收入是154万。...说实在的,网红收入这么高,对打工仔来说是非常的冲击!...这个是2015年数据,现在的薪资可能有所增长,但股票数肯定少了,我们就算加上股票年收入100万好了。...更讽刺的是这些网红的工作压力远远没有一个阿里P8那么!! 在如今这个多元化的社会,有时真的没必要在打工这条路上一路走到黑,换一条路走,或许是另一番景象!

4.3K10

数据开发:消息队列如何处理重复消息

消息队列是越来越多的实时计算场景下得到应用,而在实时计算场景下,重复消息的情况也是非常常见的,针对于重复消息,如何处理才能保证系统性能稳定,服务可靠?...今天的大数据开发学习分享,我们主要来讲讲消息队列如何处理重复消息?...也就是说,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。 At least once:至少一次。...更加通用的方法是,给数据增加一个版本号属性,每次更新数据前,比较当前数据的版本号是否和消息中的版本号一直,如果不一致就拒绝更新数据,更新数据的同时将版本号+1,一样可以实现幂等更新。...关于大数据开发学习,消息队列如何处理重复消息,以上就为大家做了基本的介绍了。消息队列在使用场景当中,重复消息的出现不可避免,那么做好相应的应对措施也就非常关键了。

2.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据开发:消息队列如何处理消息积压

    实时消息处理,是当前大数据计算领域面临的常见场景需求之一,而消息队列对实时消息流的处理,常常会遇到的问题之一,就是消息积压。今天的大数据开发学习分享,我们就来聊聊,消息队列如何处理消息积压?...一般来说,消息积压的直接原因一定是系统中的某个部分出现了性能问题,来不及处理上游发送的消息,才会导致消息积压。...如果是一个离线系统,它在性能上更注重整个系统的吞吐量,发送端的数据都是来自于数据库,这种情况就更适合批量发送。可以批量从数据库读取数据,然后批量来发送消息,同样用少量的并发就可以获得非常高的吞吐量。...如果是单位事件发送的消息增多,比如说是赶上促或者抢购,短时间内不太可能优化消费端的代码来提升消费性能,唯一的方法是通过扩容消费端的实例来提升总体的消费能力。...关于大数据开发学习,消息队列如何处理消息积压,以上就为大家做了基本的介绍了。消息积压是实时流处理常见的问题之一,掌握常见的解决思路和方案,还是很有必要的。

    2.3K00

    Flink处理腾讯云数据订阅消息实践

    对于Mysql,可以监听其binlog日志,并输出到消息队列完成订阅,而腾讯云上有各种各样数据库,还有一些自研的数据库,都让用户来自研对接的方式显然成本太高,所以腾讯云推出了数据订阅任务,满足用户实时处理数据数据变更的诉求...因此在处理时需要根据Kafka 中的每条消息消息头中都带有分片信息进行划分处理。...这个分包的逻辑就是为了处理这种单行变更消息很大的场景。...数据订阅任务会将binlog数据先转化为Entries并将其序列化,再对序列化后的数据进行分包处理,因此在消费端,需要将多个分包的消息全部收到,才能解析成Entries处理。..., e); } } } 在数据同步的任务场景中,处理数据源产生的binlog消息是一定要保证顺序的(不一定是全局顺序),例如对同一条数据的2次更新在处理时乱序的话,可能会导致最终更新目标表的结果不正确

    2.6K171

    达观数据应对大规模消息数据处理经验

    达观数据是为企业提供大数据处理、个性化推荐系统服务的知名公司,在应对海量数据处理时,积累了大量实战经验。...其中达观数据在面对大量的数据交互和消息处理时,使用了称为DPIO的设计思路进行快速、稳定、可靠的消息数据传递机制,本文分享了达观数据在应对大规模消息数据处理时所开发的通讯中间件DPIO的设计思路和处理经验...一、数据通讯进程模型 我们在设计达观数据消息数据处理机制时,首先充分借鉴了ZeroMQ和ProxyIO的设计思想。...假设:三个proxy server的属于同一epoll thread,且三个proxy server假设都处理能力无限。...十、 全文总结 达观数据处理大规模数据方面有多年的技术积累,DPIO是达观在处理数据通讯时的一些经验,和感兴趣的朋友们分享。未来达观数据将不断分享更多的技术经验,与大家交流与合作。

    1.7K80

    网站建设服务器怎么保证数据安全?网站租用服务器一年要交多少钱

    网站租用服务器一年要交多少钱?小编下面就为大家介绍一下相关内容。 网站建设服务器怎么保证数据安全?...网站中涉及的数据大部分都是比较隐私的,这些数据的安全性要有一定的保证才能让网站稳定运行,那么网站建设服务器怎么保证数据安全?...服务器的数据安全工作一般都是由网站运维人员负责的,需要通过服务器的防火墙、服务器的登录、服务器的故障警告以及服务器的定期排查等等方式来保证数据安全使用。 网站租用服务器一年要交多少钱?...网站租用的服务器价格和具体的规格大小是有很大关系的,普通级别的网站服务器一年只需要几千元钱就可以了,不过这种服务器承载的用户们数量比较少,像企业级别的服务器一年的租用费剧需要几万块,不过租用服务器相对实体服务器来说成本要低的多了...关于网站建设服务器怎么保证数据安全的文章内容今天就介绍到这里,网站的安全性是非常重要的,万一网站数据出现泄漏就会让用户们不再信任网站,产生的后果是很严重的。

    9.7K10

    参考消息:2015数据发展十预测公布

    会上发布的《中国大数据技术与产业发展白皮书(2014年)》预测, 2015年我国大数据产业发展将主要有以下十特点。...大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识,而非对数据的简单统计分析。...二、数据科学带动多学科融合,但是数据科学作为新兴的学科,其学科基础问题体系尚不明朗,数据科学自身的发展尚未成体系。在大数据时代,随着社会的数字化程度逐步加深,越来越多的学科在数据层面趋于一致。...三、跨学科领域交叉的数据融合分析与应用将成为今后大数据分析应用发展的重大趋势。大数据技术发展的目标是应用落地,因此大数据研究不能仅仅局限于计算技术本身。...五、大数据多样化处理模式与软硬件基础设施逐步夯实,内存计算将继续成为提高大数据处理性能的主要手段。 六、大数据安全会持续令人担忧。 七、新的计算模式取得突破。 八、各种可视化技术和工具提升大数据分析。

    88820

    数据5关键处理技术

    文章转自:真灼社 大数据已经逐渐普及,大数据处理关键技术一般包括:大数据采集、大数据处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。...数据处理就是对采集到的原始数据进行清洗、填补、平滑、合并、规格化以及检查一致性等。这个处理过程可以帮助我们将那些杂乱无章的数据转化为相对单一且便于处理的构型,以达到快速分析处理的目的。...因此要对数据过滤、去噪,从而提取出有效的数据数据清理主要包含遗漏值处理(缺少感兴趣的属性)、噪音数据处理数据中存在着错误、或偏离期望值的数据)、不一致数据处理。...一)大数据面临的存储管理问题 ●存储规模数据的一个显著特征就是数据量大,起始计算量单位至少是PB,甚至会采用更大的单位EB或ZB,导致存储规模相当。...二)我国大数据的存储及处理能力挑战 当前,我国大数据存储、分析和处理的能力还很薄弱,与大数据相关的技术和工具的运用也相当不成熟,大部分企业仍处于IT产业链的低端。

    9.4K30

    数据揭秘:过去一年,软件测试行业都有哪些核心热点?

    经过数据整理和分析,现将调研结果报告开放给各位软件测试同行。期待各位提出反馈和建议,也希望 TesterHome 社区今后每一年都能给测试行业贡献更高质量的行业调研报告。...值得注意的是已经有将近 1/4 的人处于 30-35 岁的年龄段,前阵子热烈讨论的 34 岁年龄焦虑的话题可算是吸引力大量的眼球,也引发了“行业中年危机”讨论,而大于 35 岁的测试人员达到了 4.8%...14 优秀的测试人员应该具备的技术/能力:真·测试咖牛在哪里? ? 优秀的测试人员具备的能力,这个数据可以帮助大家知道,想要得到行业认可,应该从哪些方面入手学习,才更容易在同行中具备优势。...果然 API 自动化测试和 UI 自动化测试占比最高啊,社区的数据也反映出大家比较热衷于讨论这两个话题。...同时也留下了一些疑惑,比如工作中需求不明确占了 77.8%的问题;大于 35 岁的测试人员有 4.8%;一批应届生直接进入测试行业,而很多院校还没有专门的测试专业和课程;测试行业的薪资水平似乎不那么高等等

    80821

    数据库的日志文件处理技巧

    如何分析数据库的日志文件?...在做数据库维护的时候,经常需要使用数据库日志来排查问题,有时候会遇到日志文件比较大,例如一个历史MySQL的slowlog上TB了,或者MongoDB的log上几百G,通常这种情况下,我们有下面几个方法来处理日志...01 日志处理方法 当我们遇到日志文件很大的时候,使用vim打开不可取,打开的时间很慢,而且还有可能打爆服务器内存。...一般是通过下面几种方法来处理: 1、head 或者 tail 命令查看日志首尾信息。...02 总结 文中我们一共分享了3种处理的日志文件的做法: 1、tail 或者 head 命令 这种方式的使用场景有限制,只能查看日志首尾的内容。

    1.1K20

    (四) MdbCluster分布式内存数据库——业务消息处理

    (四) MdbCluster分布式内存数据库——业务消息处理   上篇:(三) MdbCluster分布式内存数据库——节点状态变化及分片调整   离上次更新文章已有快5个月,我还是有点懒。...下面我们继续讨论第二节中提到的最后一个问题:业务消息是如何校验、错误消息如何重定向、超时消息如何处理?   ...我们先回顾下业务消息的大概处理流程:在MdbClient、MdbAgent、MdbRWNode都会保存一份完整的SlotList列表,以标明每个数据分片对应的节点。...MdbClient收到重定向消息时,会进行消息重定向,以继续正常流程。   3. 超时消息如何处理?   首先要讨论一下超时消息是如何产生的。...多分片消息处理   当一个查询为全表扫描或者涉及多个分片的数据操作时,MdbClient会分解这些操作,并将这些操作分别发向对应的分片节点。假设对一个有5个分片节点的库进行一次全表查询。

    23540

    2021年数据Kafka:消息队列和Kafka的基本介绍

    而加入消息队列后,系统可以从消息队列中取数据,相当于消息队列做了一次缓冲。 ?...- 订阅消息系统和一个强大的队列,可以处理大量的数据,并使能够将消息从一个 端点传递到另一个端点,kafka 适合离线和在线消息消费。...kafka 消息保留在磁盘上,并在集群内复制以防止数据丢失。kafka构建在 zookeeper 同步服务之上。它与 apache 和 spark 非常好的集成,应用于实时流式数据分析。..., 并使他们一标准的合适提供给多个服务器 3) 流式处理 : 流式的处理框架 (spark, storm , flink) 从主题中读取数据 , 对其进行处理 , 并将处理后的结果数据写入新的主题,...来源: https://blog.csdn.net/xiaoweite1/article/details/119272472 “IT咖说”欢迎广大技术人员投稿,投稿邮箱:aliang@itdks.com

    1.1K40

    2021年数据Kafka(九):kafka消息存储及查询机制原理

    ​​​​​​​ kafka消息存储及查询机制原理 一、Kafka数据存储机制         segment段中有两个核心的文件一个是log,一个是index。...通过下图中的数据,可以看到一个segment段差不多会存储70万条数据。...二、Kafka数据查询机制 需求1: 读取 offset=368776 的message消息数据, 数据集如下 第一步: 确定segment段 第二步: 通过segment file 查找 message...寻找的步骤总结 确定数据所在的segment段, 所以可以推断  368776 这条数据在第二个segment段中 在这个段中, 先去查询 index文件, 从中找到 368776 消息在log文件具体的物理偏移量位置...本文由 Lansonli 原创,首发于 CSDN博客 大数据系列文章会每天更新,停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

    1.6K10

    处理不平衡数据的十Python库

    数据不平衡是机器学习中一个常见的挑战,其中一个类的数量明显超过其他类,这可能导致有偏见的模型和较差的泛化。有各种Python库来帮助有效地处理不平衡数据。...在本文中,我们将介绍用于处理机器学习中不平衡数据的十Python库,并为每个库提供代码片段和解释。...1、imbalanced-learn imbalanced-learn是scikit-learn的扩展,提供了各种重新平衡数据集的技术。它提供过采样、欠采样和组合方法。...imblearn.ensemble import RUSBoostClassifier rusboost = RUSBoostClassifier() rusboost.fit(X, y) 总结 处理不平衡数据对于建立准确的机器学习模型至关重要...根据你的数据集和问题,可以选择最合适的方法来有效地平衡数据

    39820

    数据处理分析的六工具

    下面请看详细介绍: Hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。...Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。...用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点: 高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。 高扩展性。...Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。...RapidMiner RapidMiner是世界领先的数据挖掘解决方案,在一个非常的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

    3K150

    数据处理必备的十工具

    数据处理必备的十工具 1....Apache Hive Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。...Pentaho Business Analytics 从某种意义上说, Pentaho 与Jaspersoft相比起来,尽管Pentaho开始于报告生成引擎,但它目前通过简化新来源中获取信息的过程来支持大数据处理...Cloudera Cloudera正在努力为开源Hadoop,提供支持,同时将数据处理框架延伸到一个全面的“企业数据中心”范畴,这个数据中心可以作为首选目标和管理企业所有数据的中心点。...它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的HDFS服务。

    2.7K30

    处理不平衡数据的十Python库

    数据不平衡是机器学习中一个常见的挑战,其中一个类的数量明显超过其他类,这可能导致有偏见的模型和较差的泛化。有各种Python库来帮助有效地处理不平衡数据。...在本文中,我们将介绍用于处理机器学习中不平衡数据的十Python库,并为每个库提供代码片段和解释。...1、imbalanced-learn imbalanced-learn是scikit-learn的扩展,提供了各种重新平衡数据集的技术。它提供过采样、欠采样和组合方法。...imblearn.ensemble import RUSBoostClassifier rusboost = RUSBoostClassifier() rusboost.fit(X, y) 总结 处理不平衡数据对于建立准确的机器学习模型至关重要...根据你的数据集和问题,可以选择最合适的方法来有效地平衡数据

    42720

    模型预训练中的数据处理及思考

    作者有以下三理由: • 网页数据的量级比公开数据的多,仅用专有数据模型模型训练不到最佳效果:GPT3 论文中说自己模型参数是175B,使用了大约300B的token数量进行模型训练,但根据scaling...• 专有数据处理起来很麻烦:网页数据有固定的格式,我们可以根据html上面的标签进行处理,而专有数据因为来源很杂,格式不统一等原因,甚至需要一份数据,一种处理方式很费时间。...数据规模 先看结论 • 仅仅用CommonCrawl的网页数据中构建训练数据,训练了了Falcon-40B模型,并取得了不错的效果(huggingcase的模型开源模型排行榜OpenLLM Leaderboard...处理结果 实验&结论 作者主要比的是模型zero-shot泛化能力。 • 可以看到OSCAR-22.01数据集上训练的模型,zero-shot能力显著低于其他模型,因为其没有去重。...DeepMind证明了提升模型规模和提升数据质量同样重要,仅仅是模型也做不好推理任务,但如果数据处理的好的话,模型的推理能力能大幅提升。

    1.1K10
    领券