新媒体大数据平台“清博“获2100万元A轮融资 近日,新媒体大数据平台“清博大数据”宣布完成A轮融资,融资金额为2100万人民币,由飞图创投领投,本轮融资之后估值将达2.1亿元人民币。 据悉,清博大数
数据中台最近讨论非常火热,本文总结了数据中台最常见的10个问题并一一作答,便于读者更好的理解数据中台的内涵。
在业务增涨过程中,每个企业不知不觉积累积累了一些数据。无论数据是多是少,企业都希望让“数据说话”,通过对数据的采集、存储、分析、计算最终提供对业务有价值信息。
除了支撑集团的大数据建设,团队还提供To B服务,因此我也有机会接触到一些正在做数字化转型的传统企业。从2018年末开始,原先市场上各种关于大数据平台的招标突然不见了,取而代之的是数据中台项目,建设数据中台俨然成为传统企业数字化转型的首选,甚至不少大数据领域的专家都认为,数据中台是大数据下一站。
数据分析,大数据应用的一个主要场景,通过数据分析指标监控企业运营状态,及时调整运营和产品策略。大数据平台上运行的绝大多数大数据计算都是关于数据分析的,各种统计、关联分析、汇总报告,都需要大数据平台。
物流产业是物流资源产业化而形成的一种复合型或聚合型产业。物流资源包括运输、仓储、装卸、搬运、包装、流通加工、配送、信息平台等。这些资源产业化后就形成了运输业、仓储业、装卸业、包装业、加工配送业、物流信息业等。它是一种复合型产业,因为所有产业的物流资源不是简单的垒加,而是一种整合。
【数据猿导读】海关大数据的建设,主要需建立一个多方数据共享,互联互通的海关大数据平台,并在此基础上重新构建新的业务系统,实现业务系统的互联互通,并利用大数据驱动海关、监管、征税、查私和编制海关统计智能化和自动化的处理
先说观点:因为还没找到更好的。 接下来说原因,首先来看看大数据平台都在干什么。 原因 结构化数据计算仍是重中之重 大数据平台主要是为了应对海量数据存储和分析的需求,海量数据存储的确不假,除了生产经营产生的结构化数据,还有大量音视频等非结构化数据,这部分数据很大,占用的空间也很多,有时大数据平台 80% 以上都存储着非结构化数据。不过,数据光存储还不行,只有利用起来才能产生价值,这就要进行分析了。 大数据分析要分结构化和非结构化数据两部分讨论。 结构化数据主要是企业生产经营过程中产生的业务数据,可以说是企业的
怎样才能用起来大数据?障碍如何解决?中国企业家研究院对10多家在大数据应用方面的领先企业进行了采访调研,更多家企业进行了书面资料调研,我们发现: ■ 当前中国企业的大数据应用可以归类为:大数据运
【PConline 杂谈】大数据以及电商时代的到来,对于传统零售行业冲击真是不小,但是根据权威的调查显示,现在仍然有超过半数的销售额是存在于线下销售的,也就是说,线下零售仍然在这个电商时代占据着举足轻重的地位。 越来越多的数据开始证明,随着大数据技术的广泛应用,很多购物中心和商场通过对用户的实际购买行为和习惯进行海量数据分析,从而针对不同人群制定出相对应的营销策略和促销手段,已经使得很多的消费者逐渐回归到线下零售的大军当中。 购物中心当中的兼顾吃喝玩乐的服务体验,以及通过融合社交与消费功能的大数据平
我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场 革命还有多远?而追上领先者又需要多快的步伐? 研究结论 怎样才能用起来大数据?障碍如何解决?中国企业家研究院对10多家在大数据应用方面的
【案例】国美金控:让消费金融可视更可靠
数据猿导读 在金融服务业开放政策和云计算、大数据技术双重推动下,互联网金融领域的跨界融合正在成为一种趋势。但在互联网金融与普惠金融业务中存在的风险不可小觑,需要借助大数据手段进行智能营销和风控。 本篇
现在能源行业,不论是政府政策还是群众呼应,都要求建设智能智慧能源行业,今天我们从为什么,怎么做来为大家讲解如何建设能源行业大数据。
服装电商零售线上线下一体化帮助解决企业单渠道运营难题,融合线上线下全渠道销售体系,实现全渠道商品信息、价格、服务等环节一体化。
近年来,实体零售低迷成为趋势,客流下降、渠道管理混乱、高库存、反应慢、以及落后的供应链问题暴露的更加明显。而随着互联网人口红利逐渐消失,电商步入成熟期,许多企业电子商务的发展也逐渐遇到瓶颈。价格战、关店潮、倒闭潮、裁员潮、资金链断裂、股价暴跌等故事在零售业舞台不断上演。
2017年12月25日,腾讯社交广告、微信支付与绫致时装集团达成合作,在全国首次推出人脸智慧时尚店。依靠社交大数据能力,腾讯社交广告联合微信支付为绫致时装集团定制智能推荐引擎,将线上线下消费场景链接在一起,提供定制化推荐的产品推荐服务。 同时,利用微信朋友圈广告,腾讯社交广告联合微信支付助力绫致时装集团向更多高价值顾客投放精准品牌广告,快速定位、高效导流,帮助商家打造营销闭环,促进线上线下消费融合。 绫致时装集团是欧洲最大的时装集团之一,旗下拥有JACK&JONES、SELECTED、ONLY、VERO
在电子商务系统中,SKU(Stock Keeping Unit,库存单位)和SPU(Standard Product Unit,标准产品单位)是两种不同的概念,它们共同用于商品管理和库存控制。虽然理论上可以只使用SKU来管理商品,但在实际应用中,同时使用SPU和SKU有其明显的优势和必要性。
在大数据推动的商业浪潮中,要么学会使用大数据的杠杆创造商业价值,要么被大数据驱动的新商业格局所淘汰。毋庸置疑,当下越来越多的企业已开始应用大数据,并利用大数据分析增强企业的创新能力、竞争力、用户体验与生产力。出身于互联网行业的电商企业已经先知先觉,意识到未来对数据收集和分析能力的强弱将可能决定自身的核心竞争力,数据力就是企业的生命力。目前大部分电商都有自己的大数据策略,在愈演愈烈的市场格局中占取更有利的地形优势。 众所周知,电商和传统商家的最大区别在于,电商构建的各类型数据库可以轻而易举地记录全部用户的各类
声明:本文参考了淘宝/滴滴/美团发表的关于大数据平台建设的文章基础上予以整理。参考链接和作者在文末给出。
作者: Divakar Mysore等 来源: DeveloperWorks 摘要:本文介绍一种评估大数据解决方案的可行性的基于维度的方法。通过回答探索每个维度的问题,您可以通过自己对环境的了解来确定某个大数据解决方案对您是否适合。仔细考虑每个维度,就会发现有关是否到了改进您的大数据服务的时候的线索。 简介 在确定投资大数据解决方案之前,评估可用于分析的数据;通过分析这些数据而获得的洞察;以及可用于定义、设计、创建和部署大数据平台的资源。询问正确的问题是一个不错的起点。使用本文中的问题将指导您完成调查
今天我们来看一下淘宝、美团和滴滴的大数据平台,一方面进一步学习大厂大数据平台的架构,另一方面也学习大厂的工程师如何画架构图。通过大厂的这些架构图,你就会发现,不但这些知名大厂的大数据平台设计方案大同小异,架构图的画法也有套路可以寻觅。
4月20日,京东大数据来到了北京大学光华管理学院,这次由京东大数据部平台运营管理负责人葛胜利老师给北大光华管理学院的师生们带来主题为“电子商务大数据平台技术架构与产品架构”的专题讲座,为大家讲述京东大数据平台如何在短短几年的时间里突破技术难关,实现产品创新,建设高效、安全、稳定的大数据平台,并以数据支撑京东的快速发展。 讲座中,葛胜利从京东大数据平台的“使命、架构、产品、运营”四大方面出发,全面的剖析了其中的奥秘。 在讲到平台使命时,胜利总提到,大数据平台在京东集团中的战略地位很重要,因为京东的公司运营是由
日前,中国信息通信研究院正式发布《城市大数据平台白皮书》,阐述了城市大数据的概念和内涵,分析了建设城市大数据平台对于破解智慧城市建设难题的意义,并介绍了我国城市大数据平台的发展现状。
后web2.0时代,互联网、物联网每天都在生产大量数据,人们对于这些庞大数据资源的价值渴求,使得“大数据”的概念得以问世。如果说“数据”是支撑未来核心技术的基础“原材料”,那么“大数据”正在演变成一种战略资源,当“用户需求导向”成为企业共识,大数据的收集、挖掘和分析开始支撑企业的业务运转、营销策略乃至战略方向,数据成为企业愈加珍视的宝贵资产。 目前,建设有大数据平台的企业不在少数,对比传统数据库,大数据平台数据大量集中,且蕴含更高价值,其安全建设要求明显更高。然而,由于大数据平台使用非结构化数据库类型,以及
大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。 企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而
12 月 3 日、4日,2022 Apache IoTDB 物联网生态大会在线上圆满落幕。大会上发布 Apache IoTDB 的分布式 1.0 版本,并分享 Apache IoTDB 实现的数据管理技术与物联网场景实践案例,深入探讨了 Apache IoTDB 与物联网企业如何共建活跃生态,企业如何与开源社区紧密配合,实现共赢。
现代商业竞争已经从渠道、资源向系统整体效率倾斜,而效率的竞争很大程度上来自于数据能力的支撑。 当我们从数据平台方的视角出发会发现演进路上存在着诸多挑战,比如: 1. 数据领域的生态非常庞大,针对不同场景在资源、数据规模、时效的权衡下会衍生出不同的架构和组件,以及随之带来的团队碎片化,设备资源的重复投入,数据一致性的焦虑,技术选型的困难和迁移的潜在风险; 2. 在伴随业务扩张的过程中,如何平滑而透明地解决伸缩性,用好自建以及混合多云资源;如何建设一站式多租户的数据工具链,在开发生产以及租户之间做好共享和隔离的
现在各种新名词层出不穷,顶层的有数字城市、智慧地球、智慧城市、城市大脑;企业层面的有数字化转型、互联网经济,数字经济、数字平台; 平台层面的有物联网,云计算,大数据,5G,人工智能,机器智能,深度学习,知识图谱;技术层面的有数据仓库、数据集市、大数据平台、数据湖、数据中台、业务中台、技术中台等等,总之是你方唱罢他登场,各种概念满天飞…
揭开大数据生态圈背后的真相,切实了解开发者对大数据平台的需求,用真实数据分析大数据行业发展趋势及产品方向。近日,在2014中国大数据技术大会召开前夕,CSDN特推出“2014中国大数据有奖调查”活动,旨在更全方位地洞察中国大数据产业现状,为大数据技术从业者和创业者们提供良好的参考与建议。 公司使用大数据的基本情况 时至今日,无论你是来自互联网行业、通信行业,还是金融行业、服务业或是零售业,相信都不会对大数据感到陌生。据调查报告显示,32.5%的公司正在搭建大数据平台,处于测试阶段;29.5%的公司已经在生
在大数据产业近十年潮起潮落的变迁中,有一座穿越迷雾的灯塔,驱散了人们对数据应用的疑虑,照亮了数据价值回归的征程。
曾经有一个笑话“隔着互联网,没有人知道对面是不是一条狗。”如今再看这个笑话却已是有几分老古董的味道,互联网不再是蒙住人们双眼的纱布,反而透过这个介质我们的生活习惯,兴趣偏好等等都会展露无遗。可以说,“隔着互联网,所有人都知道对面是条哈士奇。”这意味着随着信息技术的发展,数字化的虚拟世界逐步和现实世界进一步融合,虚拟世界的影响力会不断地渗透到现实,这样的未来有点像电影《黑客帝国》的场景,每个人都是由0,1这两个数字拟合的具象物,不论我们在网络上每一次购买,收藏,评论,还是在小说网站的搜索,放入书架都会在我们的
什么是“三三制”? 三三制是抗日战争时期林彪提出来的,当时,鉴于当时八路军一窝蜂的班组自由冲锋经常被敌人优势火力压制,他提出了三三制战术。面对火力密度很高,战斗意志和素养都很强的敌人,不能再进行简单
大数据作为当下最为热门的事件之一,其实已经不算是很新鲜的事情了。如果是三五年前在讨论大数据,那可能会给人一种很新鲜的感觉。大数据作为当下最为重要的一项战略资源,已经是越来越得到国家和企业的高度重视,我们从大数据被上升到国家战略层面就可窥见一二!
在大数据的发展当中,对相关专业人才的需求是在持续增长的,包括大数据开发、数据分析挖掘等不同的数据处理环节,都形成了相应的岗位体系,大家各自负责不同的环节,共同完成大数据处理任务。今天我们主要来讲讲大数据开发就业,了解大数据开发有哪些岗位?
大数据平台的基本功能和数据的导入导出对SQL任务、NoSQL任务、机器学习、批处理任务的支持
导读:本期“谁是数据英雄?传统企业大数据应用案例”给大家介绍《 兴业银行:信用卡背后的数据生命线》。兴业银行作为首批试水大数据的商业银行之一,借助大数据的关键技术和核心优势,通过对消费者行为的分析和
就是指各种大数据计算框架,存储系统、SQL引擎等等,这些技术比较常用,经过最近十几年的发展,主流的技术产品相对比较集中,主要就是MapReduce、Spark、Hive、Flink技术的产品。
9月25日,工业和信息化部信息化和软件服务业司将“2018年大数据产业发展试点示范项目名单”进行公示。
创建大数据平台,是个系统性的工程,并不像简简单单开发一款APP一样,你要深度的了解当前的环境以后的发展。事实上,做大数据平台不是做大数据本身,而是寻找大数据与行业、与业务的某种关联,内在的联结点,能否联姻成功,取决于策划与开发的能力。策划开发得好,事半功倍,会对行业和业务产生不可估量的价值,策划与开发的不好,则会竹篮打水一场空,费时费力自讨苦吃,成为“鸡肋”在所难免。
金融科技&大数据产品推荐:BIGDAF——专业的Hadoop大数据安全防火墙
近期,由大数据产业生态联盟发起的“第十三期优秀大数据产品、解决方案和应用案例”测评结果发布,广域铭岛天满大数据平台和Geega天满大数据解决方案分别入围。
作者 | 宋文欣 以 Hadoop 为中心的大数据生态系统从 2006 年开源以来,一直是大部分公司构建大数据平台的选择,但这种传统选择随着人们的深入使用,出现的问题也越来越多,比如:数据开发迭代速度不够快、集群资源利用效率过低、新的开发工具集成非常复杂等。这些问题已经成为困扰企业数字化转型加速迭代和升级的主要障碍。 而传统大数据平台通常是以 Hadoop 为中心的大数据生态技术。一个 Hadoop 集群包含 HDFS 分布式文件系统和以 Yarn 为调度系统的 MapReduce 计算框架。围绕 H
2009年,Gartner发布2010年全球Top10技术趋势,高级分析取代上一年列第二位的BI,成为2010年第二位新技术;2011年,麦肯锡全球研究院(MGI)发布了报告《大数据:创新、竞争和生产力的下一个前沿阵地》,预测高级分析这一职位对于数据科学家人才的需求缺口到2018年将达到14万~19万。从此,数据科学家成为最抢手的职业,以大数据为花名的数据科学得到了全球从政府到各行各业的青睐,并因此得以持续迅猛发展。
自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 WeDataSphere 的实践情况。
如今,企业都面临着日益增长的数据量、各种类型数据的实时化和智能化处理的需求。此时,云原生大数据平台的高弹性扩展、多租户资源管理、海量存储、异构数据类型处理及低成本计算分析的能力,受到了大家的欢迎。但企业应该如何做好大数据平台的云原生改造和升级呢?
本文首先介绍了大数据架构平台的组件架构,让读者了解大数据平台的全貌,然后分别介绍数据集成、存储与计算、分布式调度、查询分析等方面的观点,最后是专家眼里大数据平台架构的发展趋势。
最近有几个群友问我大数据怎么入门,作为一个零基础大数据入门学习者该看哪些书呢?我结合自己看过的书和了解到的比较好的数据,给大家分享一下。
领取专属 10元无门槛券
手把手带您无忧上云