大数据可视化的新动态 Intetix Foundation(英明泰思基金会)由从事数据科学、非营利组织和公共政策研究的中国学者发起成立,致力于通过数据科学改善人类社会和自然环境。通过联络、动员中美最顶尖的数据科学家和社会科学家,以及分布在全球的志愿者,我们创造性地践行着我们的使命:为美好生活洞见数据价值。 1 引言 数据可视化是将数据以不同形式展现在不同系统中,其中包括属性和变量的单位信息[1]。基于可视化发现数据的方法允许用户使用不同的数据源,来创建自定义分析。先进的分析集成了许多方法,为了支持交互式
数据可视化是将信息转换为可视化上下文(例如地图或图形)的实践,以使人脑更容易理解数据并从中获取见解。数据可视化的主要目标是更容易识别大型数据集中的模式、趋势和异常值。该术语通常与其他术语互换使用,包括信息图形、信息可视化和统计图形。
译者注:大量研究结果表明人类通过图形获取信息的速度比通过阅读文字获取信息的速度要快很多,那么将数字以可视化的形式展示出来还有其它什么好处,本文详细列举了7种优势。以下为译文。 数据可视化是指以饼状图等图形的方式展示数据。这帮助用户能够更快地识别模式。交互式可视化能够让决策者深入了解细节层次。这种展示方式的改变使得用户可以查看分析背后的事实。 以下是数据可视化影响企业做决策和战略调整的七种方式。 1.动作更快 人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱
大家可能都比较熟悉python这门技术语言,确实在大数据火起来之后python的热度一度高涨,不可否认的是python在数据采集这块真的很好用,很方便。
数据可视化,是关于数据视觉表现形式的科学技术研究。数据可视化是指以图形或图表格式通过人工或以其他方式组织和显示数据,以使受众能够更清楚地查看分析结果、简化正在使用的数据中的复杂性、了解并掌握正在使用的数据制作方法。
人们常说,数据是组织的生命线。然而,解析这些数据并有效地使用仍然是一个挑战。 大数据可视化 假设拥有一个巨大的金矿,但不能使用。那么,作为一个金矿的拥有者有什么用呢?大数据的情况与之相似。专家认为,如
可能大家都听说过这样一句话"字不如表、表不如图",其实背后所表达出来的意思是对于复杂难懂且体量庞大的数据而言,图表的信息量要大得多,这也是数据可视化的核心价值所在。
传统企业在数字化转型中,大数据分析技术对数据有效的展示能够极大提高对信息的洞察力。目前虽然已有大量的大数据可视化工具可供使用且很多大数据企业也正在使用这些工具,但在企业中能有效使用大数据可视化工具的还是很少。西安弈聪信息技术有限公司(简称:弈聪软件)CEO卓建超认为,虽然大数据可视化分析技术已经得到了深入发展,企业对于数据可视化的投资和意识都在不断增加,但是可视化工具的长期采纳以及企业的投资回报依然很难实现。现在虽然大数据可视化仍然具有巨大的前景,且近十年来它也一直是一门主流学科,但目前它依然不够成熟。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
一、Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
本文主要讲述了如何利用云图这个数据可视化工具进行数据可视化和图表的生成,通过案例展示了云图的强大之处。文章还介绍了云图的一键式数据可视化功能,以及丰富的图表类型和配色方案,让用户可以快速生成各种类型的图表,满足不同场景的需求。同时,文章还介绍了云图的多种模板,让用户可以直接在模板上进行修改尝试,方便快捷。
本文通过分析中国八大菜系菜谱数据,使用数据可视化的方式展示数据,并对数据进行挖掘和分析。通过BDP这个工具,实现了零代码的数据可视化图表,并针对数据中的菜品原料、口味、烹饪方式等特点,给出了相应的数据分析结论。
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。在众多的客户关系管理的分析模式中,RFM模型是被广泛提到的。该数据模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况。
数据分析体系可分为数据整理、数据分析、数据呈现。数据整理包含对源数据的获取、筛选、清洗、整理和统计,数据整理是对源数据的初加工,是数据分析工作的前置。数据分析是运用数据分析的工具,根据自己的目的,对数据进行深层次的挖掘和分析,找出内在的联系和变化;数据呈现是对分析的结果进行呈现,大部分是通过专业图表来展示,是数据分析报告的重要组成部分。对很多公司来说,数据整理不是难事,难就难在业务数据如何解读?如何呈现才能说明问题?从中能发现什么业务问题?有没有改善的机会? 可见,如何将数据落地,这是
本文从大数据应用出发,讨论数据可视化在大数据时代所面临的一系列挑战,并重点介绍AutoVis针对这些挑战所做尝试及其体系架构、关键技术和功能特点。
随着数据量的快速增长和对数据洞察力的需求日益增强,数据可视化成为了数据科学和分析领域中至关重要的一部分。Python作为一种功能强大、灵活且易于学习的编程语言,拥有丰富的数据可视化库和工具,使得开发者能够轻松地创建出令人印象深刻的图形。
一、Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。 二、Google Chart API Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。 三、D3 D3(Data Driven Documents)是支持SVG渲染的另一种Jav
大数据技术是一种新一代技术和构架,大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,大数据技术已经运用到各个领域
导读:通过图形化手段清晰地传达数据,促进信息的传递与沟通,是数据可视化的基础要素,也是设计美学和功能相结合的具体表现形式。Davinci便是这样一款可视应用平台。在敏捷大数据(Agile BigData)理论的背景下,围绕“数据视图”和“可视组件”两个核心概念设计,支持多种可视化功能。Davinci具体的设计理念和功能特点都有什么呢?它又将怎么成长呢?让我们一起来阅读本文吧~
大数据时代,数据过剩,人才短缺,越来越多的IT专业人士希望能够进入充满机遇的大数据领域,但是,到底哪些具体的大数据专业岗位和人才最为吃香呢?人力资源公司Kforce近日发布了一份报告根据IT职业薪酬水平给出了2014年最热门的十大大数据工作职位(年薪): 一、ETL开发者(11-13万美元) 随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。 ETL软件行业相对成熟,相关岗位的工作生命周期比较长
因为准备考研,要看的东西太多了,所以关于Power BI的操作方面的内容会搁置一段时间,以后主要写写理论知识。
巴西的新闻网站Visualoop,这是一家汇集来自互联网的信息图表和数据为中心的可视化网站,今年,他们继续评选出这一年最优秀的大数据可视化相关工具。 “我们很艰难的选出这20个新的平台或工具—如果你是我们每周数据新闻报道的忠实读者,你可能记得我们列表中的几个。”在这个榜单中他们忽略了新的版本和现有工具的更新,例如:CartoDB, Mapbox, Tableau, D3.js, RAW, Infogr.am 等等。 下面,就是Visualoop从他们的报道中提取的20大可视化工具和资料。 工具: 1、Int
PPV课大数据 翻译:数据客(ID: idacker) 如需转载,请与数据客联系授权 巴西的新闻网站Visualoop,这是一家汇集来自互联网的信息图表和数据为中心的可视化网站,今年,他们继续评选出这一年最优秀的大数据可视化相关工具。 “我们很艰难的选出这20个新的平台或工具—如果你是我们每周数据新闻报道的忠实读者,你可能记得我们列表中的几个。”在这个榜单中他们忽略了新的版本和现有工具的更新,例如:CartoDB, Mapbox, Tableau, D3.js, RAW, Infogr.am 等等。 下
针对普通客户端浏览和分析大数据困难的问题, 结合 Spark 和 LOD 技术, 以热图为例提出一种面向大数据可视化技术框架. 首先利用 Spark 平台分层并以瓦片为单位并行计算, 然后将结果分布式存储在 HDFS 上, 最后通过web 服务器应用Ajax技术结合地理信息提供各种时空分析服务.文中重点解决了数据点位置和地图之间的映射, 以及由于并行计算导致的热图瓦片之间边缘偏差这2个问题.实验结果表明,该方法将数据交互操作与数据绘制和计算任务分离, 为浏览器端大数据可视化提供了一个新的思路.
编者注:互联网后时代,我们谈的最多的不是电脑,而是基于互联网产生的伟大的互联网公司,比如谷歌、微软、百度、阿里巴巴等;移动互联网后时代,我们谈的更多的不是手机,而是基于移动互联网产生的各种APP和手机游戏等。大数据时代,2012年,2013年你谈概念还可以,但从2014年起来,我们也陆续看到了一些基于大数据产生的创业公司和大数据产品。无论任何时代,产品才是王道。我们可以大胆的预计,在2015年,大家在来谈大数据,肯定不是说大数据的概念、存储硬件、解决方案等等,更多的是基于大数据开发出来的数据产品。 所以
翻译:数据客(ID: idacker) 如需转载,请与数据客联系授权 巴西的新闻网站Visualoop,这是一家汇集来自互联网的信息图表和数据为中心的可视化网站,今年,他们继续评选出这一年最优秀的大数据可视化相关工具。 “我们很艰难的选出这20个新的平台或工具—如果你是我们每周数据新闻报道的忠实读者,你可能记得我们列表中的几个。”在这个榜单中他们忽略了新的版本和现有工具的更新,例如:CartoDB, Mapbox, Tableau, D3.js, RAW, Infogr.am 等等。 下面,就是2014
俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据
来源:DataCastle数据城堡(ID:DataCastle2016)、大数据分析和人工智能(ID:datakong)
在Google搜索有关“大数据”,会出现很多个由立体0和1组成的图片,一些解释性的信息图示,甚至出现“黑客帝国”的界面。那“大数据”到底是什么,人类能够理解吗? 如果问一家大公司的首席执行官什么是“大数据”,他们可能会描述一些类似于黑匣子(飞机上的飞行记录器)的东西,或者在白板上画一朵云。如果问数据科学家,他们可能会向你解释一下 4V的概念,4V是指用信息图示解释(其实只是事实的视觉集合),当然还带有相应的说明。之所以这样做是因为“大数据”是一个有着不同含义、象征,应用于不同
大数据及其应用的迅速发展,使得大数据人才缺口较大,大数据也迅速成为行业和市场的热点,更多的企业无论是对人才的招聘还是在培训都成了刚需,大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理
如今学习应用数据可视化的渠道有很多,你可以跟踪一些专家博客,但更重要的一点是实践/实操,你必须对目前可用的数据可视化工具有个大致了解。以下是Netmagzine列举的二十大数据可视化工具,无论你是准备
“为了在内部项目过会上,证明某平台的可投性。走访了20多个地区做调研,蹲点影院、商场、游戏厅等年轻人聚集的地方,观察当地年轻人在观影间隙、闲暇之余,都在用什么APP。并将调研结果整理成了一份长达60多页的PPT,试图说服领导。”
如今学习应用数据可视化的渠道有很多,你可以跟踪一些专家博客,但更重要的一点是实践/实操,你必须对目前可用的数据可视化工具有个大致了解。以下列举的二十大数据可视化工具,无论你是准备制作简单的图表还是复杂
可视化信息以易于阅读的视觉化内容正在被越来越多的人所青睐。可视化形式呈现信息的需求也随之增加,因此近年来涌现出了许多数据可视化工具。对于不熟悉数据可视化领域的人来说,最好的方法是尝试一些现成的解决方案来快速制作标准化的图表。对于拥有更多技术专长、经验丰富的用户,最好的办法是使用更灵活的库。 下面与大家分享九大数据可视化库,希望你可以找到最适合的一款。
一年多前,那时候我还在实习,正好上一个项目接近的尾声,紧随而来的就是一个大数据一体化的项目,包括了数据的采集、处理、计算、整合以及数据展示等。 而可视化这块,在前期就落在了我的头上,虽然这款开源的小工具最终没有作为大数据可视化的解决方案,但是这是一个自己完完整整,一步一个脚印写起来的,从中学到的东西自然不仅限于这款工具,还有查找资料的方法、解决问题的思路等等,总得来说都是一段不错的学习经历。 时隔一年多,我还是想着把代码开源出来: 一来是因为这是群友和一些网友的呼声; 二来是目前的工作与可视化方
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
麻省理工学院推出大数据可视化工具——“数据美国” 近日,麻省理工学院推出了一个 “数据美国”在线大数据可视化工具 ,可以实时分析展示美国政府公开数据库(Open Data)。据悉,用户只需要输入任意美
之前在Excel图表合集那篇文章了曾提了几点Excel与其他可视化工具以及编程类软件在可视化理念方面的粗浅理解,有小伙伴儿在后台回复说还是没有听明白。 可能是我当时没有说清楚,今天这篇,我专注于Excel的作图规则,深入的研究下Excel由数据源到可视化图表之间的关系是如何对应的,倘若你已经在工作中横跨好几种可视化工具(包括Excel),那么本文可以更好地帮助你理解Excel与其他工具的区别。 倘若你还一直局限在Excel的圈子内,那也没关系,仔细体会这一篇内容,后续记得跟踪我针对其他可视化工具作图理念的
文:傅志华 大数据的产业链从整体上可以分为四大层,包括IT基础层、数据基础层、数据应用层和数据安全层。个人认为在中国市场对于创业者来说,数据应用层的创业机会最多,想象空间也最大。 本文将重点介绍数据应
前言 数据可视化,是指将相对晦涩的的数据通过可视的、交互的方式进行展示,从而形象、直观地表达数据蕴含的信息和规律。 早期的数据可视化作为咨询机构、金融企业的专业工具,其应用领域较为单一,应用形态较为保守。步入大数据时代,各行各业对数据的重视程度与日俱增,随之而来的是对数据进行一站式整合、挖掘、分析、可视化的需求日益迫切,数据可视化呈现出愈加旺盛的生命力,表现之一就是视觉元素越来越多样,从朴素的柱状图/饼状图/折线图,扩展到地图、气泡图、树图、仪表盘等各式图形。表现之二是可用的开发工具越来越丰富,从专业的
您推荐哪种数据可视化工具?嗯,这是一个棘手的问题,因为有太多的数据可视化工具。以下图为例:
这个时代是大数据时代,也是大数据人才稀缺的时代。由于中国人才缺口比较大,大数据也迅速成为行业和市场的热点,更多的企业无论是对人才的招聘还是在培训都成了刚需,这也促使大数据人才的薪资在同岗位中是最 高的,掌握大数据技术,工资提升40%左右是很常见的。
大数据时代,需要工具实现数据可视化,需要倚仗大数据可视化工具,这些工具中不乏有适用于Flash、HTML5、NET、Java、Flex等平台的,也不乏有适用于常规图表报表、金融图表、工控图表、甘特图、流程图、数据透视表、OLAP多维分析等图表报表开发的。
随着大数据时代的到来,数据可视化成为一种重要的工具。它将庞大复杂的数据转化成直观、易懂的图形,便于用户快速理解和分析数据。而Echarts是一种优秀的数据可视化工具,能够帮助我们实现各种各样的数据可视化。
《可视化组织》的作者菲尔·西蒙在本文中讨论了数据可视化工具和它们改变商业对话的强大力量。大数据可能导致大的混乱,因此要从混乱中梳理清晰的数据,从而发现商业机会,就变得无比的重要。清晰可见的呈现出数据和发现数据的过程一样重要。通过可视化的工具创建热图、数据关系树图以及空间地理图,能够帮助CEO在几分钟内通过可视化的方式解释一个销售趋势。可视化能够把数据转换成对话。这一课题在菲尔·西蒙的即将出版的新书《大到无法忽视》中也被提及,《可视化组织:数据可视化,大数据,需求更优决策》(Wiley出版社,2014年)也
领取专属 10元无门槛券
手把手带您无忧上云