首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何确定插值滤波器的阶数

image-20201117215623551   那么问题来了,对于插值滤波器,如何确定通带和阻带的频率呢?这就涉及到我们刚开始学习数字信号处理时的插值和抽取理论。...当信号抽取时,在数字频率上,信号的频谱是展宽的,当信号插值时,在数字频率上,信号的频谱是压缩的。...image-20201117221455842   而抽取滤波器则刚好相反,对于3倍的插值滤波器,信号带宽在数字频率上,缩小了1/3。...比如我们今天所说的插值滤波器,可以直接使用resample函数,比如要对向量sig插值4倍,就可以直接使用sig2 = resample(sig, 4, 1)。...image-20201117222730941 这里的N是10,也就是说,如果是p倍插值,Matlab给出的插值滤波器阶数是2x10xp,也就是4倍插值滤波器对应阶数是80阶。

1.7K30

matlab插值函数的作用,matlab 插值函数

大家好,又见面了,我是你们的朋友全栈君。...MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,’method’) 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, ‘method...’表示采用的插值方法,MATLAB提供的插值方法有几种: ‘method’是最邻近插值, ‘linear’线性插值; ‘spline’三次样条插值; ‘cubic’立方插值.缺省时表示线性插值 注意:所有的插值方法都要求...x是单调的,并且xi不能够超过x的范围。...例如:在一 天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为 12,9,9,1,0,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2

1.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Unity【Lerp & Slerp】- 线性插值与球形插值的区别

    在Unity的向量Vector和四元数Quaternion类中,均包含线性插值Lerp和球形插值Slerp的函数,那么两者之间有何区别,通过下面的例子进行观察: 图一中黄色线与红色线相交的点是从点...A到点B进行线性插值得出的结果,图二则是球形插值得出的结果,或许称之为弧形插值更容易理解。...二者的区别从图中可以明显看出,从四元数的角度来看,线性插值每帧得出的旋转结果是不均匀的,从代数的角度思考,如果两个单位四元数之间进行插值,如图一中的线性插值,得到的四元数并不是单位四元数,因此球形插值更为合理...坐标和Rotation旋转进行插值运算时, 通常用Vector3中的插值函数去处理Position,用Quaternion中的插值函数去处理Rotation。...如果我们使用Vector3中的插值函数去处理Rotation,则会出现如下这种情况: 代码如下: using UnityEngine; using System.Collections; public

    1.7K20

    Jacobi方法求实对称阵的特征值

    Jacobi方法用于求实对称阵的全部特征值、特征向量。...对于实对称阵 A,必有正交阵 Q ,使 QT A Q = Λ 其中Λ是对角阵,其主对角线元素λii是A的特征值,正交阵Q的第j列是A的第i个特征值对应的特征向量。 如何将实对称矩阵化为对角矩阵?...Jacobi方法用超平面旋转对矩阵A做相似变换,化A为对角阵,进而求出特征值与特征向量。超平面旋转矩阵的形式为 ? 容易验证 Q 是正交阵。...下面以二维平面旋转矩阵为例,来展示旋转矩阵是如何将实对称矩阵的非对角元素化0的。 在二维平面上,超平面旋转矩阵退化为如下的形式: ?...由此可见,只要旋转角度合适,就可以将实对称矩阵的非对角元素化为0,从而形成对角矩阵。接下来就要找这个合适的旋转角度,也就是求一个旋转角,使得矩阵经过旋转变换之后,有非对角元素出现0。 ? ?

    2.7K60

    透视矫正插值的秘密

    想要了解什么是“透视矫正插值”,先要知道什么是插值,插值发生在流水线的光栅化阶段,这一阶段将根据三角形三个顶点的顶点属性值(坐标、法线、UV、颜色等)决定其中每一个像素的插值属性。 ?...最简单的插值办法就是线性插值,所以我们先来了解一下什么是线性变换。...那什么是线性插值呢?即均匀地插值,比如线段的中点的插值一定是两端之和处以2,这个例子是一维的插值,多维也是类似。下图中列举了顶点色和顶点法线的线性插值。 ?...所以怎么办呢,不能简单的线性插值,所以我们要找到插值和插值点之间真正的函数关系,所以我引入了下面的视锥侧剖图:其中O点是摄像机,L是近截面,ax+bz=c是三角形。...于是能够得出结论:在原始三角形上,插值与插值点的位置线性相关,但在透视投影后的屏幕三角形上,插值与Z的比值与插值点的位置线性相关。

    1.9K40

    OEEL高阶应用——反距离插值和克里金插值的应用分析

    简介 反距离插值(Inverse Distance Weighting,简称IDW)和克里金插值(Kriging)是常用的地理信息系统(GIS)和空间数据分析中的插值方法。...它们的目标是在已知的离散点数据集上,通过估计空间上的未知点的值来创建连续的表面。下面将分别对两种方法进行详细解释。 1. 反距离插值(IDW) 反距离插值是一种基于离散点之间距离的插值方法。...另外,IDW方法对噪声较敏感,容易产生估计误差较大的情况。 2. 克里金插值(Kriging) 克里金插值是一种基于空间自相关性的插值方法。...它的基本思想是在已知点的值之间建立空间相关模型,通过该模型来估计未知点的值。克里金插值方法使用了半变函数来描述已知点之间的空间相关性。...根据半变函数的不同形式,克里金插值可以分为简单克里金、普通克里金和泛克里金等多种变种。 克里金插值的基本步骤如下: 1) 第一步是通过半变函数来估计空间相关性的参数ÿ

    47310

    matlab自带的插值函数interp1的四种插值方法

    ,'o',xx,y2,'r'); title('临近插值') %球面线性插值 y3=interp1(x,y,xx,'spline'); figure plot(x,y,'o',xx,y3,'r') title...('球面插值') %三次多项式插值法 y4=interp1(x,y,xx,'cubic'); figure plot(x,y,'o',xx,y4,'r'); title('三次多项式插值')...(2) Spline三次样条插值是所有插值方法中运行耗时最长的,插值函数及其一二阶导函数都连续,是最光滑的插值方法。占用内存比cubic方法小,但是已知数据分布不均匀的时候可能出现异常结果。...(x,Y,xi,method) 用指定插值方法计算插值点xi上的函数值 y=interp1(x,Y,xi,method,’extrap’) 对xi中超出已知点集的插值点用指定插值方法计算函数值 y=interp1...用指定方法插值,但返回结果为分段多项式 Method 方法描述 ‘nearest’ 最邻近插值:插值点处函数值与插值点最邻近的已知点函数值相等 ‘liner’ 分段线性插值:插值点处函数值由连接其最邻近的两侧点的线性函数预测

    2K10

    python中griddata的外插值_利用griddata进行二维插值

    有时候会碰到这种情况: 实际问题可以抽象为 \(z = f(x, y)\) 的形式,而你只知道有限的点 \((x_i,y_i,z_i)\),你又需要局部的全数据,这时你就需要插值,一维的插值方法网上很多...,不再赘述,这里仅介绍二维的插值法 这里主要利用 scipy.interpolate 包里 griddata 函数 griddata(points, values, xi, method=’linear...的第一维长度一样,是每个坐标的对应 \(z\) 值 xi:需要插值的空间,一般用 numpy.mgrid 函数生成后传入 method:插值方法 nearest linear cubic fill_value...# 插值的目标 # 注意,这里和普通使用数组的维度、下标不一样,是因为如果可视化的话,imshow坐标轴和一般的不一样 x, y = np.mgrid[ end1:start1:step1 * 1j,...start2:end2:step2 * 1j] # grid就是插值结果,你想要的到的区间的每个点数据都在这个grid矩阵里 grid = griddata(points, values, (x, y

    3.8K10

    浅谈MemoryCache的原生插值方式

    TryGetValue(object key, out object result); protected virtual void Dispose(bool disposing); 但是你使用常规模式去插值...---- 但是看官们一般不会使用MemoryCache的原生方法,而是使用位于同一命名空间的 扩展方法Set。...这是怎样的设计模式?IDisposable接口不是用来释放资源吗? 为啥要使用Dispose方法来向MemoryCache插值? 不能使用一个明确的Commit方法吗?...---- 基于此现状,我们如果使用MemoryCache的原生插值方法, 需要这样: var s = new MemoryCache(new MemoryCacheOptions { }); using...Last MemoryCache插值的实现过程很奇葩 尽量使用带明确大括号范围的using语法,C#8.0推出的不带大括号的using语法糖的作用时刻在函数末尾,会带来误导。

    55020

    RBF 插值的理论与应用

    在机器学习中,RBF 常被用作支持向量机的核函数。而我们在这里主要讨论 RBF 应用于插值的情况。 什么是插值 # 插值(Interpolation)是一种函数拟合的方式3。...这里的插值函数 s(x) 需要满足插值条件 s(x_{i}) = f_{i} ,也就是说,这个插值函数必须精确匹配到给定的观测值。这里需要提一下「插值」和「逼近」这两种拟合方式的区别。...在 RBF 插值中,采样点就是空间中的位置点。简单来说,RBF 的插值为我们提供了这样一种方法:已知空间中若干个位置上某个属性的值,此时可以求解出空间中任意一个位置的对应属性值。...显然,这里应该将这 n 个已知点的位置互相进行计算,形成 n 个方程,未知数就是前面提到的 \lambda : 图片 对于这个应用场景而言,我们将 s_i 设为第 i 个观测点的红色通道的颜色值。...运行起来后,场景中的 3 个方块相当于上面提到的采样点 x ,而场景中的 5 个球就是待求解的 y ,拖动这些球就可以看到它们在不同位置的插值结果了: 图片 总结 # RBF 是一个常用的插值方法,除了这种简单的颜色插值之外

    1.1K60

    Scipy和Numpy的插值对比

    本文针对scipy和numpy这两个python库的插值算法接口,来看下两者的不同实现方案。 插值算法 常用的插值算法比如线性插值,原理非常简单。...如下图所示就是三种不同的边界条件取法(图片来自于参考链接3): 接下来看下scipy中的线性插值和三次样条插值的接口调用方式,以及numpy中实现的线性插值的调用方式(numpy中未实现三次样条插值算法...: 在这个结果中我们发现,numpy的线性插值和scipy的线性插值所得到的结果是一样的,而scipy的三次样条插值的曲线显然要比线性插值更加平滑一些,这也跟三次样条插值算法本身的约束条件有关系。...总结概要 线性插值和三次样条插值都是非常常用的插值算法,使用插值法,可以帮助我们对离散的样本信息进行扩展,得到样本信息中所不包含的样本点的信息。...在python的scipy这个库中实现了线性插值算法和三次样条插值算法,而numpy库中实现了线性插值的算法,我们通过这两者的不同使用方式,来看下所得到的插值的结果。

    3.6K10

    变速中的“时间插值”选择

    一、定义 插值 是指在两个已知值之间填充未知数据的过程 时间插值 是时间值的插值 二、分类与比较 三、tip 光流法虽然很好,但是限制也很大,必须要 对比非常大 的画面,才能够实现最佳的光流效果,否则就会出现畸变现象...通常在加速之后突然实现短暂的光流升格,可以实现非常炫酷的画面。 光流能够算帧,但是实际上拍摄的时候还是 要尽可能拍最高的帧率 ,这样的话,光流能够有足够的帧来进行分析,来实现更加好的效果。...帧混合更多的用在快放上面。可实现类似于动态模糊的感觉,视觉上也会比帧采样要很多。 ---- [参考] 【剪辑中那些关于变速的技巧!】...https://zhuanlan.zhihu.com/p/40174821 【视频变速的时间插值方式核心原理,你懂吗?】...https://zhuanlan.zhihu.com/p/67327108 【更改剪辑的持续时间和速度】https://helpx.adobe.com/cn/premiere-pro/using/duration-speed.html

    3.9K10

    NV12最近的邻居插值缩放和双线性插值缩放

    导言本文是一个优化的NV12图像缩放程序。有不同类型的图像缩放算法。它图像缩放算法的复杂性与图像质量损失和性能低下有关。我决定选择最简单的“最近邻居插值”和双线性插值,以调整NV12图像的大小。...在你阅读我的提示之前。你需要对格式有一些基本的概念。并且知道什么是插值缩放算法。如果您之前厌倦了RGBA格式的图像比例,您会更容易理解我的程序是如何工作的。...total_length = ylen + ulen + vlen = ylen * 3 / 2每四个Y值匹配相同的U值和V值。...例如:Y00 Y01 Y10 Y11 份额 U00 和 V00Y20 Y21 Y30 Y31共享U10和V10算法最近的插值复制代码srcX = dstX * (srcWidth / dstWidth)...该算法只需使用“四舍五入”,将源图像中最近的像素值存储在dest图像数组中。因此,效果不会很大,通常会有一些严重的马赛克。双线性插值双线性插值同时使用小数部分和整数,根据四个像素计算最终像素值。

    2.2K21

    我常用的缺失值插补方法

    有的时候,面对一个有缺失值的数据,我只想赶紧把它插补好,此时的我并不在乎它到底是怎么缺失、插补质量如何等,我只想赶紧搞定缺失值,这样好继续进行接下来的工作。 今天这篇推文就是为这种情况准备的!...之前介绍过一个非常好用的缺失值插补R包:R语言缺失值插补之simputation包,支持管道符,使用起来非常简单且优雅,而且支持的方法的也非常多。...关于R语言中的缺失值插补,大家遇到最多的教程应该是mice包,不过我不太常用,所以就不介绍了。 一般来说,如果只是简单的均值或中位数填补的话,不需要R包,自己写一行简单的代码就搞定了。...(df2)) ## ## FALSE ## 40 像这种比较简单的插补方法,比如均数、中位数、最大值,最小值等方法,也可以通过Hmisc包实现。...此外,缺失值插补在cran的task view里面有一个专题:Missing Data,大家感兴趣的可以自己查看,里面有R语言所有和缺失值插补有关的R包介绍!

    1.2K50

    Unity3d:实现自己的Dotween,C#扩展方法,插值旋转,插值移动

    ,tween类型(移动,旋转,缩放等),目标位置(角度),总共运动时间组装成tween返回 Mono单例类中开启协程做插值 旋转插值 在协程中插值运算,float f = myTween.time; f...myTween.transform.rotation = Quaternion.Lerp(myTween.m_rotation, myTween.m_tarRotation, 1.0f-f/myTween.time); tranfrom当前四元数...= 运动开始时 与 目标的差值 ,1.0f-f/myTween.time 的值在每帧越来越靠近 1,说明越来越向目标 public static IEnumerator YieldRotate...} } } myTween.OnComplete(); } 移动插值...//总长度/时间 = 每秒要移动的长度 ,然后每帧移动长度 = 每秒要移动的长度 *Time.deltaTime public static IEnumerator UniversalVector3Iter

    47720

    关于WRF插值站点的二三事

    前言 很多时候我们需要拿模拟数据和站点图作对比,那就需要把模拟数据插值到站点 今天来尝试两种WRF数据插值到站点的方法并使用meteva进行简单绘图 方法一:xesmf库重插值后使用meteva进行双线性插值到站点...方法二:proj+scipy重插值后使用meteva进行最临近插值到站点 import meteva.base as meb import matplotlib.pyplot as plt #由于meteva...or level 格式错误,请更改相应数据格式或直接指定title 以上可视化仅仅是展示插值后成果,需要进一步可视化可以使用matplotlib或者参考两种micaps站点数据的简单绘制方法 就使用而言...,xesmf无疑是更简单的,并且插值后直接是xarray数组省去一步。...因为使用的插值方法不同就不作比较了,xesmf和griddata都有几种插值方法,感兴趣的读者可自行探索。 实际上在meteva的插值就使用了两种:最临近插值与双线性插值。效果好坏还需大家自行试验。

    16710
    领券