在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下
1....pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan, 3]})
>>> df
A B
0 1.0 1.0
1 2.0 NaN
2 NaN 3.0
# 对每一列的...# 默认为0,表示去除包含 了NaN的行
# axis=1,表示去除包含了NaN的列
>>> df = pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan,...中的大部分运算函数在处理时,都会自动忽略缺失值,这种设计大大提高了我们的编码效率。