首页
学习
活动
专区
圈层
工具
发布

数据开发治理平台谁最值?腾讯云 WeData 凭“三把刀”杀出重围

DLC 0-1 分钟冷启动,夜间自动缩容到 0 需预留 CU Glue 2.0 缩容到 0 DLI 预留池 BigQuery...集成+开发+治理+质量 全链路 需额外购买质量、安全模块 需 Glue Studio + Glue DataBrew 需叠加 DLI、DLV 需 Cloud Composer...质量左移 0 元附加 • 事前规则、事中阻断、事后报告全部内置,无需额外购买质量模块; • 一条规则阻断下游 3 次重跑,直接砍掉无效计算费用。...四、真实案例:某电商客户 30 天账单对比 • 数据量:每日 300 GB 日志入湖 + 5 条 Flink 实时任务; • 原方案(EMR + 自建 Airflow):月成本 ¥4,500; • 迁到...product/wedata →【立即选购】→ 选“1 元试用”; 领取 500 元资源包 + DLC 9.9 元/小时券(截止 2025-09-30); 按官方“5 分钟快速开始”跑通第一个离线+实时任务

7810

构建端到端的开源现代数据平台

如果想避免设置云环境,可以在本地尝试不同的工具,只需将数据仓库(示例中的 BigQuery)替换为开源替代品(像 PostgreSQL 这样的 RDBMS 就可以了)。...首先我们只需要创建一个数据集[11],也可以随时熟悉 BigQuery 的一些更高级的概念,例如分区[12]和物化视图[13]。...• Destination:这里只需要指定与数据仓库(在我们的例子中为“BigQuery”)交互所需的设置。...要允许 dbt 与 BigQuery 数据仓库交互,需要生成所需的凭据(可以创建具有必要角色的服务帐户),然后在 profiles.yml 文件中指明项目特定的信息。...在集成编排工具时还应该考虑如何触发管道/工作流,Airflow 支持基于事件的触发器(通过传感器[40]),但问题很快就会出现,使您仅仅因为该工具而适应您的需求,而不是让该工具帮助您满足您的需求。

6.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Dbt基本概念与快速入门

    Jinja模板:DBT使用 Jinja 模板引擎来动态生成SQL查询。你可以在SQL文件中使用Jinja语法,如条件语句、循环等。...运行(Run):DBT的主要功能之一是“运行”,即执行一系列SQL转换,并将数据加载到数据仓库中。测试(Tests):DBT允许在模型上应用单元测试和数据质量检查。...编写SQL模型:在项目的models目录中编写SQL文件,定义数据转换逻辑。运行DBT:使用dbt run命令执行SQL模型,将数据加载到目标数据库。...3.4 创建和编写模型(SQL文件)在 models 目录下创建SQL文件(例如:my_model.sql),并编写数据转换逻辑。...DBT与其他ETL工具的对比DBT专注于“转换”(T),是与传统ETL工具(如Airflow)搭配使用的。

    26810

    开源工作流调度平台Argo和Airflow对比

    它提供了一种基于GitOps的应用程序部署方式,将应用程序配置存储在Git存储库中,并根据Git存储库中的最新版本自动更新和部署应用程序。...图片Airflow的特性基于DAG的编程模型Airflow采用基于DAG的编程模型,从而可以将复杂的工作流程划分为多个独立的任务节点,并且可以按照依赖关系依次执行。...用户可以在UI界面中查看任务运行情况、查看日志和统计信息。丰富的任务调度功能Airflow支持多种任务调度方式,如定时触发、事件触发和手动触发等。用户可以自定义任务的调度规则,以适应不同的场景。...创建DAG用户可以通过编写Python代码来创建DAG,包括定义任务、设置任务之间的依赖关系和设置任务调度规则等。...运行Airflow任务一旦DAG被定义和设置好,用户可以通过Airflow的命令行工具来启动任务,并且可以在UI界面中查看任务状态、日志和统计信息等。

    9K71

    apache-airflow

    “工作流即代码”有以下几个用途: 动态:Airflow 管道配置为 Python 代码,允许生成动态管道。 可扩展:Airflow® 框架包含用于连接众多技术的运算符。...“demo” DAG 的状态在 Web 界面中可见: 此示例演示了一个简单的 Bash 和 Python 脚本,但这些任务可以运行任意代码。...Airflow 的用户界面提供: 深入了解两件事: 管道 任务 一段时间内管道概述 在界面中,您可以检查日志和管理任务,例如在失败时重试任务。...Airflow 的开源性质可确保您使用由全球许多其他公司开发、测试和使用的组件。在活跃的社区中,您可以找到大量有用的资源,包括博客文章、文章、会议、书籍等。...虽然 CLI 和 REST API 确实允许触发工作流,但 Airflow 并不是为无限运行基于事件的工作流而构建的。Airflow 不是流式处理解决方案。

    1.1K10

    在Kubernetes上运行Airflow两年后的收获

    也许最简单的动态生成 DAG 的方法是使用单文件方法。您有一个文件,在循环中生成 DAG 对象,并将它们添加到 globals() 字典中。...解决方案是转向多文件方法,我们为想要动态创建的每个 DAG 生成一个 .py 文件。通过这样做,我们将 DAG 生成过程纳入了我们的 DBT 项目存储库中。...在 Airflow 中设置它们非常简单。...在这里,我们从 BaseNotifier 类创建了自己的自定义通知器,这样我们就可以根据需要定制通知模板并嵌入自定义行为。例如,在开发环境中运行任务时,默认仅将失败通知发送到 Slack。...在 prd 环境中,通知将发送到我们的在线工具 Opsgenie。 一个通知器,多个目标和定制 自定义通知也是可模板化的,因此团队可以使用标准格式在 Slack 中创建信息消息,例如。

    1.2K10

    有赞大数据平台的调度系统演进

    DP调度系统现状 1、DP调度系统架构设计 我们团队在17年的时候调研了当时的主流的调度系统(Azkaban/Oozie/Airflow等),最终决定采用 Airflow 1.7作为DP的任务调度模块,...利用DS的project冗余工作流配置,实现测试、发布的配置隔离 2、DolphinScheduler改造方案设计 完成架构设计后,需要落实到具体的改造方案中,因此我们也基于工作流/任务状态转移、测试...任务执行流程改造 任务运行测试流程中,原先的DP-Airflow流程是通过dp的Master节点组装dag文件并通过DP Slaver同步到Worker节点上再执行Airflow Test命令执行任务测试...在切换为DP-DS后所有的交互都基于DS-API来进行,当在DP启动任务测试时,会在DS侧生成对应的工作流定义配置并上线,然后进行任务运行,同时我们会调用ds的日志查看接口,实时获取任务运行日志信息。...通过任务测试和工作流发布这两个核心操作的流程可以看到,因为工作流的元数据维护和配置同步都是基于DP Master来管理,只有在上线和任务运行的时候才会与调度系统(Airflow、DS)进行交互,我们也基于这点实现了工作流维度下调度系统的动态切换

    2.6K20

    Flink on Zeppelin 作业管理系统实践

    在一年多时间的产线实践中,我们对作业提交的方式策略进行了几次演进,目前在跑作业规模Flink Batch 任务日均运行超5000次,流作业500+,均稳定运行。...模式也在开发中。...多租户支持 支持多个用户在Zeppelin上开发,互不干扰 1.2 基于NoteBook作业提交的痛点 在最初任务较少时,我们将批、流作业都运行在单节点Zeppelin server中,直接使用SQL...批作业提交优化 在统一作业管理中注册Flink Batch SQL 作业,并配置调度时间及依赖关系; Airflow 生成dag,定时触发执行; 每一组任务执行时,首先新建EMR 集群,初始化Zeppelin...通过作业管理系统,我们将注册的任务记录在mysql数据库中,使用Airflow 通过扫描数据库动态创建及更新运行dag,将flink batch sql 封装为一类task group,包含了创建AWS

    2.3K20

    大规模运行 Apache Airflow 的经验和教训

    然而,由于我们允许用户从自己的项目中部署工作负载(甚至在部署时动态生成作业),这就变得更加困难。...虽然基于 crontab 的时间表不会导致这种激增,但它们也存在自己的问题。人类偏向于人类可读的时间表,因此倾向于创建在整点、每小时、每晚的午夜运行的作业,等等。...下图显示了在我们最大的单一 Airflow 环境中,每 10 分钟完成的任务数。...在我们的生产 Airflow 环境中,每 10 分钟执行一次任务 存在许多资源争用点 在 Airflow 中,存在着很多可能的资源争用点,通过一系列实验性的配置改变,最终很容易出现瓶颈问题。...Celery 队列和孤立的工作器 如果你需要你的任务在不同的环境中执行(例如,依赖不同的 python 库,密集型任务有更高的资源允许量,或者不同的存取级别),你可以创建额外的队列,由作业的一个子集提交任务

    3.3K20

    Apache Airflow 2.3.0 在五一重磅发布!

    编辑:数据社 全文共1641个字,建议5分钟阅读 大家好,我是一哥,在这个五一假期,又一个Apache项目迎来了重大版本更新——Apache Airflow 2.3.0 在五一重磅发布!...01 Apache Airflow 是谁 Apache Airflow是一种功能强大的工具,可作为任务的有向无环图(DAG)编排、任务调度和任务监控的工作流工具。...Airflow在DAG中管理作业之间的执行依赖,并可以处理作业失败,重试和警报。开发人员可以编写Python代码以将数据转换为工作流中的操作。...有700多个提交,包括50个新功能,99个改进,85个错误修复~ 以下是最大的和值得注意的变化: 动态任务映射(Dynamic Task Mapping):允许工作流在运行时根据当前数据创建一些任务,而不是让...,Master和Worker支持动态上下线 04 总结 调度平台在数据仓库、BI等场景中起到重要的作用。

    2.2K20

    没看过这篇文章,别说你会用Airflow

    作者 | 董娜 Airflow 作为一款开源分布式任务调度框架,已经在业内广泛应用。...Scheduler:Airflow Scheduler 是一个独立的进程,通过读取 meta database 的信息来进行 task 调度,根据 DAGs 定义生成的任务,提交到消息中间队列中(Redis...Worker:Airflow Worker 是独立的进程,分布在相同 / 不同的机器上,是 task 的执行节点,通过监听消息中间件(redis)领取并且执行任务。...遇到的问题 分布式与代码同步问题 Airflow 是分布式任务分发的系统, master 和 worker 会部署在不同的机器上,并且 worker 可以有很多的类型和节点。...在实际使用中,Airflow scheduler 和 meta database 是单点。为了增加系统的健壮性,我们曾经尝试过给 database 加上 load balancer。

    2K20

    Apache DolphinScheduler之有赞大数据开发平台的调度系统演进

    在调研对比过程中,Apache DolphinScheduler 进入了我们的视野。...,希望基于工作流粒度,实现调度系统动态切换; 测试与发布的工作流配置需隔离,目前任务测试和发布有两套配置文件通过 GitHub维护,线上调度任务配置需要保证数据整个确性和稳定性,需要两套环境进行隔离。...工作流的原数据维护和配置同步其实都是基于 DP master来管理,只有在上线和任务运行时才会到调度系统进行交互,基于这点,DP 平台实现了工作流维度下的系统动态切换,以便于后续的线上灰度测试。...功能补齐 Catchup 机制实现调度自动回补 DP 在实际生产环境中还需要一个核心能力,即基于 Catchup 的自动回补和全局补数能力。...在图 1 中,工作流在 6 点准时调起,每小时调一次,可以看到在 6 点任务准时调起并完成任务执行,当前状态也是正常调度状态。

    3.1K20

    Python中有啥好用的开源任务调度管理项目

    任务背景: 上个月领导给我一个模型工程化专项工作,大体内容就是,把模型团队交付的项目代码,部署到应用环境中,跑出来的结果供系统使用。这也是我最近一直在忙着做的一个事情,天天加班到8、9点。...任务需求: 在实际生产中,因为业务系统是一个基本投资收益分析的系统,对于基金来说,多数的数据分析都是基于季报来的,所以模型运行在一定程度上运行频率并不高。...、固定时间间隔以及crontab 类型的任务,可以在主程序的运行过程中快速增加新作业或删除旧作业,如果把作业存储在数据库中,那么作业的状态会被保存,当调度器重启时,不必重新添加作业,作业会恢复原状态继续执行...特点: 可视化界面操作 定时任务统一管理 完全完全的Crontab 支持秒级任务 作业任务可搜索、暂停、编辑、删除 作业任务持久化存储、各种不同类型作业动态添加 Jobcenter任务列表 某个Job...但列表中编辑功能不可用,也没有在列表操作中接入任务日志查看的功能。 总结: 有句话说,踏破铁鞋无觅处,得来全不费功夫。

    11.9K23

    Tapdata Connector 实用指南:数据入仓场景之数据实时同步到 BigQuery

    BigQuery 在企业中通常用于存储来自多个系统的历史与最新数据,作为整体数据集成策略的一部分,也常作为既有数据库的补充存在。...其优势在于: 在不影响线上业务的情况下进行快速分析:BigQuery 专为快速高效的分析而设计, 通过在 BigQuery 中创建数据的副本, 可以针对该副本执行复杂的分析查询, 而不会影响线上业务。...在服务账号详情区域,填写服务账号的名称、ID 和说明信息,单击创建并继续。 c. 在角色下拉框中输入并选中 BigQuery Admin,单击页面底部的完成。 3....参考右侧【连接配置帮助】,完成连接创建: ③ 创建数据目标 BigQuery 的连接 在 Tapdata Cloud 连接管理右侧菜单栏,点击【创建连接】按钮,在弹出的窗口中选择 BigQuery,...基于 BigQuery 特性,Tapdata 做出了哪些针对性调整 在开发过程中,Tapdata 发现 BigQuery 存在如下三点不同于传统数据库的特征: 如使用 JDBC 进行数据的写入与更新,则性能较差

    9.5K10

    Airflow 实践笔记-从入门到精通一

    ):随着大数据和云计算的普及,数据工程师的角色和责任也更加多样化,包括ETL开发、维护数据平台、搭建基于云的数据基础设施、数据治理,同时也是负责良好数据习惯的守护者、守门人,负责在数据团队中推广和普及最佳实践...Airflow可实现的功能 Apache Airflow提供基于DAG有向无环图来编排工作流的、可视化的分布式任务调度,与Oozie、Azkaban等任务流调度平台类似。...每个 Dag 都有唯一的 DagId,当一个 DAG 启动的时候,Airflow 都将在数据库中创建一个DagRun记录,相当于一个日志。...XComs:在airflow中,operator一般是原子的,也就是它们一般是独立执行,不需要和其他operator共享信息。...在官方镜像中,用户airflow的用户组ID默认设置为0(也就是root),所以为了让新建的文件夹可以有写权限,都需要把该文件夹授予权限给这个用户组。

    6.2K11

    常用开源工作流引擎Activiti JBPM Flowable Bonita Airflow

    服务层:提供业务流程执行的核心服务,包括任务分配和处理、流程控制和状态管理等。 应用程序层:提供了在浏览器中运行的Web界面,帮助用户创建、部署和监视业务流程。...jBPM的应用程序层给予了人类操作者非常直观的界面,在任务的处理上可以更加自由灵活的在处理任务过程中掌控全局。...模型器:用于创建和修改流程定义文件,支持基于Web的图形化编辑器。 任务表单设计器:用于创建和修改任务表单,支持基于Web的表单设计器。...Bonita的应用程序层给予了人类操作者非常直观的界面,在任务的处理上可以更加自由灵活的在处理任务过程中掌控全局。...Airflow的劣势主要有: 对于非技术人员来说,学习曲线较陡峭; 在处理流程中,不太适合长时间运行的任务。

    32600
    领券