首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于特定公差带的密度图(归一化)

基于特定公差带的密度图(归一化)是一种数据可视化技术,用于展示数据的分布情况。它通过将数据点在二维平面上进行密度分布的可视化,帮助人们更直观地理解数据的分布特征。

该技术的基本原理是将数据点映射到一个二维平面上,并根据数据点的密度进行着色。密度较高的区域会被着以较深的颜色,而密度较低的区域则会被着以较浅的颜色。通过这种方式,可以清晰地看出数据点的分布情况,以及密度的变化趋势。

基于特定公差带的密度图(归一化)在许多领域都有广泛的应用。以下是一些应用场景:

  1. 数据分析与挖掘:通过密度图可以直观地观察数据的分布情况,帮助分析人员发现数据中的规律和异常情况。
  2. 地理信息系统:密度图可以用于展示地理位置上的数据分布,例如人口密度、犯罪率等,帮助决策者做出相应的决策。
  3. 金融风险管理:通过密度图可以观察金融市场中不同资产的价格分布情况,帮助风险管理人员评估风险和制定相应的策略。
  4. 生物医学研究:密度图可以用于展示生物医学数据的分布情况,例如细胞密度、基因表达水平等,帮助研究人员理解生物过程和疾病机制。

对于基于特定公差带的密度图(归一化),腾讯云提供了一系列相关产品和服务,例如:

  1. 腾讯云数据分析平台:提供了丰富的数据分析和可视化工具,可以帮助用户生成密度图并进行数据分析。
  2. 腾讯云地理信息系统:提供了地理信息数据的存储和处理服务,支持生成基于特定公差带的密度图。
  3. 腾讯云金融科技解决方案:为金融行业提供了数据分析和风险管理的解决方案,包括生成密度图的功能。

以上是基于特定公差带的密度图(归一化)的概念、分类、优势、应用场景以及腾讯云相关产品和服务的介绍。希望对您有所帮助。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 儿童和青少年静息态MEG振荡活动的发展轨迹:一项纵向研究

    神经振荡可能对脑成熟方面如髓鞘化和突触密度变化敏感。更好地确定发育轨迹和可靠性对于理解典型和不典型神经发育是必要的。在这里,我们在2.25年中对110名正常发育的儿童和青少年(9 ~ 17岁)中检验了信度。利用10 min静息态脑磁图数据,计算归一化源谱功率和组内相关系数。我们发现了全局归一化功率的性别特异性差异,男性显示出与年龄相关的delta和theta降低,以及与年龄相关的beta和gamma增加。女性的显著年龄相关变化较少。结构磁共振成像显示,男性灰质总量、皮质下灰质、皮质白质体积较大。总灰质体积有显著的年龄相关变化,与性别特异性和频率特异性相关的归一化功率。在男性中,总灰质体积的增加与theta和alpha的增加以及gamma的减少相关。测试-重测可靠性在所有频带和源区域都很好。重测信度范围从好(alpha)到一般(theta)到差(其余波段)。虽然成人的静息态神经振荡可以具有类似指纹的质量,但我们在这里表明,由于大脑的成熟和神经发育的变化,儿童和青少年的神经振荡继续进化。

    02

    什么样的点可以称为三维点云的关键点?

    这个工作来自于中国香港科技大学和中国香港城市大学。我们知道,随着三维传感器以及相关扫描技术的进步,三维点云已经成为三维视觉领域内一项十分重要的数据形式。并且随着深度学习技术的发展,许多经典的点云深度学习处理方法被提出来。但是,现有的大多数方法都关注于点云的特征描述子学习。并且,在稠密的点云数据帧中,如果对所有点云都进行处理,将会带来巨大的计算和内存压力。针对这种问题,提取部分具有代表性的关键点则成为一种自然而且有效的策略。但是,什么样的点可以称为三维点云中的关键点呢?这个问题仍然是一个开放的、没有明确答案的问题。

    03

    PNAS:基于频率标记EEG分离视觉皮层数值和连续幅度提取的数值神经特征

    1、研究背景 当涉及到五个以上对象的集合时,我们可以不通过计算而快速得出对象数目的近似值。人类和其他动物物种一样,都有一种对数值数量的直觉。这种近似大量数值的能力背后的认知机制仍然存在诸多争论。研究人员偏向于假设我们拥有一个近似数字系统(ANS),这是一种特定的系统,它从视觉场景中提取数值并建立离散数值尺度的心理表征。然而,一组对象不仅具有数量特征,而且还具有多个连续的视觉特征,包括单个对象的尺寸和集合的范围。这些连续的尺度维度本质上与数值相关(例如,数值越多的集合自然占据更大的区域),并且可以用作获取数值的关键视觉提示。这使得一些作者提出,数字处理没有特定的认知机制,数值要么由一般的尺度机制处理,要么来自连续维度的组合。到目前为止,关于连续尺度对数值处理的贡献还没有达成共识,大量的证据表明,它们既可以促进数值判断,也可以干扰数值判断。当前的研究利用了一种频率标记电生理学方法,将数值从连续的尺度维度中分离出来,并测量两者共同驱动的特定大脑反应。 人类根据数值辨别对象集合的能力被认为与其他动物物种一样,早在语言发展之前很久就存在于婴儿身上。有大量的行为和神经成像证据证明了这种数值能力。例如,最近的实验强调了一种自发的偏向,即当参与者必须从三个点集中选择奇数项或将集合归类为“大”或“小”时,自发地倾向于数值而不是连续的尺度:在这两种情况下,数值都被自发地选为决定标准。此外,一些研究确定了人类和猴子顶叶皮质中特定的调节数值的神经元群体。理论模型假设,这种数值能力背后的机制在于将感觉输入转化为对视觉场景中存在的元素数量的抽象估计。然而,现有的这种机制的经验证据仍然是有问题的,因为连续的尺度变化与数值变化之间存在内在的关联。连续的尺度而不是数值本身可以解释观察到的结果。这是一个悬而未决的问题:认知系统是否能够快速提取必要的数字信息,以建立一个独立于连续尺度变化的表征——如果系统具有这种能力,那么随着数字的处理,协同变化的连续尺度信息会发生什么?ANS理论提出,在归一化阶段中会过滤掉所有连续的尺度,但由于连续尺度会严重影响数值判断,因此没有太多关于该过滤阶段的证据。 另一种理论认为,数值与连续的尺度处理有关。其中,尺度理论(ATOM)用一个独特系统来描述连续尺度和数值之间的关系,该系统能够表示任何类型的离散和连续尺度,包括数值、时间(持续时间)和空间(扩展)。一些作者提出了连续量和离散量的一般尺度概念,其中尺寸知觉在发展和进化上都比数值更为原始,而连续尺度在数值尺度处理的发展中起着关键作用。有大量的经验证据支持数值和连续尺度的公共和独立神经区域。在人类顶叶皮质内发现了用于数值和连续尺度提取的部分重叠的地形图,尽管在这些地形图中不同的神经调节和组织方式暗示了不同的处理机制。根据最近的功能性(fMRI)荟萃分析,在这些重叠区域内,右侧顶叶被确定为广义尺度处理系统的一个可能的解剖学位置。此外,一些作者认为,数值只是一种抽象的认知结构,是对视觉刺激中存在的所有连续尺度特征进行加权的结果,并且数值是通过根据特定情境的需要对低层感官信息进行自适应重组来提取的。这种感觉整合(SI)理论假设所有现有的数值提取证据都可以用处理连续尺度整合的认知控制机制来解释。 理清这些假设和理解数值处理机制的主要挑战是将数值从连续尺度中分离出来。已经为行为任务开发了几种控制连续维度的简洁方法,但是它们控制整个刺激集合中的所有尺度变化,尽管每个刺激仍然包含关于数值和连续维度的信息。事实上,任何视觉刺激都携带有关数值和连续尺度的信息。因此,在严格意义上,这些方法都不能将数值从非数值尺度处理中分离出来。重要的是,这一局限性适用于到目前为止提供的几乎所有支持ANS理论的证据。 当前的研究使用了频率标记方法,该方法包括记录稳态视觉诱发电位(SSVEP),其对应特定于单个给定维度上周期性刺激变化的神经反应。SSVEP已经成功地记录到对数值变化的反应,本研究通过频率标记的实验范式系统地隔离了对数值和连续尺度的区别,该范式不需要明确的任务(因此也不需要决定或判断):视觉刺激遵循的是oddball范式,即在一系列标准刺激中周期性地引入偏差刺激。关键的是,研究人员严格控制了周期性变化的性质,因此只有考虑中的维度才会周期性波动。该操作允许记录与目标维度中的变化同步的神经响应,因为只有该特定维度会定期更新。目前的设计允许通过将每个维度指定为在单独的实验条件下的周期性偏差,来跟踪在数值中以及每个连续维度中的变化的神经辨别力。如果视觉系统对相对于波动维度的周期性变化很敏感,那么大脑应该产生与偏离频率及其谐波同步的反应。因此,研究人员能够记录与数值和每个连续维度的区别特别相关的大脑活动。

    00

    GNU Radio FFT模块结合stream to vector应用及Rotator频偏模块使用

    写个博客记录一下自己的蠢劲儿,之前我想用 FFT 模块做一些信号分析的东西,官方的 FFT 模块必须输入与 FFT 大小一致的数据,然后我也想到了使用 stream to vector 将流数据转换为固定长度的向量数据,然后再一次性喂给 FFT 模块,但是,stream to vector 模块我用的不对,导致 stream to vector 的输出连接 FFT 模块的那条线就一直是红色,我就以为官方的 FFT模块不好用,因此自己就做了 C++ OOT FFT 模块方便自己使用,今天突发奇想,官方做的应该不会有问题,会不会是我自己的使用不当,果真如此,这真是一次教训啊,做这个 FFT 花费了不少时间,既然是教训,那就吃亏是福吧。

    01

    2016-ICLR-DENSITY MODELING OF IMAGES USING A GENERALIZED NORMALIZATION TRANSFORMATION

    这篇文章[1]提出了一个参数化的非线性变换(GDN, Generalized Divisive Normalization),用来高斯化图像数据(高斯化图像数据有许多好处,比如方便压缩)。整个非线性变换的架构为:数据首先经过线性变换,然后通过合并的活动度量对每个分量进行归一化(这个活动度量是对整流和取幂分量的加权和一个常数进行取幂计算)。作者利用负熵度量对整个非线性变换进行优化。优化后的变换高斯化数据的能力得到很大提升,并且利用该变换得到的输出分量之间的互信息要远小于其它变换(比如 ICA 和径向高斯化)。整个非线性变换是可微的,同时也可以有效地逆转,从而得到其对应的逆变换,二者一组合就得到了一个端到端的图像密度模型。在这篇文章中,作者展示了这个图像密度模型处理图像数据的能力(比如利用该模型作为先验概率密度来移除图像噪声)。此外,这个非线性变换及其逆变换都是可以级连的,每一层都使用同样的高斯化目标函数,因此提供了一种用于优化神经网络的无监督方法。

    04

    ResNet架构可逆!多大等提出性能优越的可逆残差网络

    神经网络模型的一个主要诉求是用单个模型架构解决各种相关任务。然而,最近的许多进展都是针对特定领域量身定制的特定解决方案。例如,无监督学习中的当前最佳架构正变得越来越具有领域特定性 (Van Den Oord et al., 2016b; Kingma & Dhariwal, 2018; Parmar et al., 2018; Karras et al., 2018; Van Den Oord et al., 2016a)。另一方面,用于判别学习的最成功的前馈架构之一是深度残差网络 (He et al., 2016; Zagoruyko & Komodakis, 2016),该架构与对应的生成模型有很大不同。这种划分使得为给定任务选择或设计合适架构变得复杂。本研究提出一种在这两个领域都表现良好的新架构,弥补了这一差距。

    02

    Cell Reports:青年静息状态皮层hubs分为4类

    在儿童时期,支持高级认知过程的神经系统经历了快速生长和完善,这依赖于整个大脑激活的成功协调。一些协调是通过皮质中枢发生的,皮质中枢是与其他功能网络共同激活的大脑区域。成人皮层中枢有三种不同的特征,但在认知发生关键改善的发育过程中,人们对中枢的类别知之甚少。我们在大型青年样本(n = 567,年龄8.5-17.2)中确定了四个不同的中枢类别,每个类别都表现出比成年人更多样化的连接概况。整合控制-感觉处理的青少年中枢分为两个不同的类别(视觉控制和听觉/运动控制),而成人中枢则统一在一个类别下。这种分裂表明,在功能网络经历快速发展的同时,需要隔离感觉刺激。青少年控制处理中枢的功能协同激活强度与任务表现有关,这表明在将感觉信息传递到大脑控制系统和从大脑控制系统传递信息方面起着特殊作用。

    02

    颅内EEG记录揭示人类DMN网络的电生理基础

    使用无创功能磁共振成像(fMRI)的研究为人类默认模式网络(DMN)的独特功能组织和深远重要性提供了重要的见解,但这些方法在跨多个时间尺度上解决网络动力学的能力有限。电生理技术对于应对这些挑战至关重要,但很少有研究探索DMN的神经生理学基础。在此,作者在一个与先前fMRI研究一致的共同的大规模网络框架中研究了DMN的电生理组织。作者使用颅内脑电图(iEEG)记录,并评估了静息状态下的网络内和跨网络相互作用,及其在涉及情景记忆形成的认知任务中的调节情况。作者分析显示,在慢波(<4 Hz)中,DMN内iEEG同步性明显更高,而在beta(12-30 Hz)和gamma(30-80 Hz)波段中,DMN与其他大脑网络的相互作用更高。至关重要的是,在无任务的静息状态以及语言记忆编码和回忆期间都观察到了慢波DMN内同步。与静息状态相比,慢波内DMN相位同步在记忆编码和回忆时都明显较高。在成功的记忆检索过程中,DMN内慢波相位同步增加,突出了其行为相关性。最后,对非线性动态因果相互作用的分析表明,DMN在记忆编码和回忆过程中都是一个因果外流网络。作者研究结果确定了DMN的频率特异的神经生理学特征,使其能够在本质上和基于任务的认知期间保持稳定性和灵活性,为人类DMN的电生理基础提供新的见解,并阐明其支持认知的网络机制。

    02

    高斯函数、高斯积分和正态分布

    正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。

    01

    Nature子刊:大脑功能与结构的解耦合揭示了人脑脑区行为专门化

    大脑是通过结构通路相互连接的神经元群体的集合。大脑活动在此基础上表达并受其制约。因此,直接连接的区域之间功能信号间的统计依赖性更高。然而,大脑功能在多大程度上受到潜在的结构网络(文章中将其形象地称为接线图,可以理解为体现人脑神经元间连接模式的连接图)的约束仍然是一个有待解决的复杂问题。本文引入结构解耦指数来量化结构和功能之间的耦合强度,揭示了一个宏观尺度的梯度,从大脑耦合强烈的区域,到解耦合强烈的区域。这种梯度跨越了从低级感觉功能到高级认知功能的行为领域。并且,本文首次表明,结构-功能耦合的强度在空间上的变化与来自其他模式(如功能连接组、基因表达、微结构特性和时间层次)的证据一致。本文发表在NATURE COMMUNICATIONS杂志。

    03

    最悲催的三流职业:一位机械设计师的神吐槽,想成为优秀设计师必看

    按照国内的某种说法,人才分四类:首先是搞艺术,因为中华艺术是神圣的所以咱们常人无法达到;然后一流人才做销售,在中国各种政府采购及规则,能把销售做好不亚于搞艺术。二流的人才做管理,神舟飞天好几年了贪污腐败到现在还没好办法,可见管理这谭水不是一般的深啊;当放弃了梦想,失去了斗志,没有了勇气,不要过于悲伤,还可以做三流人才,做技术吧。 以前我一直没意识到自己要写下这些感悟。多年来,我在机械非标设计一线跌跌拌拌,主持设计了几十种产品的设计;在这些项目中与帝都知名设计研究院,著名高校及兄弟单位进行过多次合作。深深体会

    07
    领券