然后我们在原始图像上使用Sobel边缘检测来检测火灾的边缘,同时删除小于100的阈值。...Sobel边缘检测 下一步将使用Sobel边缘检测器来检测图像内火焰的变换。...这可以通过对图像应用 3x3 蒙版来完成 分割技术 该算法中使用的最后一项技术是分割技术,用于从非火灾背景中分割火灾。该技术完成的第一步是指定 ROI 中分段处理的颜色范围。...否则,它们不属于可被视为背景的投资回报率的一部分。使用第二种技术(Sobel边缘检测)来检测将 ROI 和非 ROI 分开的区域。 结果与分析 最后基于 50 张图像进行验证以评估算法。...准确率=TP/(TP+TN)*100% 效率测试给出为: 准确率=(TN+TP/TN+TP+FN+FP)*100% 结论 我们提出了一种基于机器学习(图像处理技术)的火灾检测算法
噪声检测 噪声检测方法 将噪声和信号区分开来是影响去噪效果好坏的重要因素之一。...(2)极值法 极值法[2]的基本思想是:在一幅图像中,邻域内的像素点和其它像素点存在较大的关联性,大多数情况下信号点与邻近像素点的灰度值差别不是太大,但噪声点相差较大;被椒盐噪声污染的像素点通常以最大值或最小值...(纯黑或纯白)的灰度值出现,在噪声点检测时,若灰度值在最大值和最小值的区间范围内,则判断该像素点为信号点,反之为噪声点。...极值判断法在一定程度上能区分噪声点和信号点,尤其椒盐噪声图像,且该方法不用设置阈值,传统的自适应中值去噪方法即采用的是极值法,但该方法对椒盐去噪时,邻域内的某些极值信号像素点在判断过程中易被误判为噪声点...邢藏菊 ,王守觉 ,邓浩江 ,罗予普 .一种基于极值中值的新型去噪算法 [J].中国图 象图形学报,2001, 6A(6):533-536 3. 董继扬 , 张军英 .
图像处理经常会用到这张赫赫有名的图片,这位lena女士的照片原本用在“花花公子”的杂志封面上,机缘巧合被当做测试素材,广泛用在图形处理领域。...,从而能很好的测试各种图像处理算法。...2.Lenna是个美女,对于图象处理界的研究者来说,美女图可以有效的吸引他们来做研究 图像边缘检测的算法有很多,包括传统的模板算⼦(Sobel、Roberts、Prewitt、Laplace)、形态学边缘检测...、经典的 Canny 边缘检测及基于深度学习的边缘检测算法等。...这篇文章讲两个有代表性的算子:sobel边缘检测和canny边缘检测 二、sobel边缘检测 2.1算法原理 基于梯度是最基本的边缘检测算法,存在较大误差和不稳定性。
正文 本次文章,没有太多好写的,就是最近做的一个机器视觉的课程设计作业,是要做一个流水线的生产线建模以及对于产品的检测识别,我个人承包了圆心半径检测的内容,熬了好几天,终于找到了一个好的算法可以比较迅速准确的找到圆了...这是我要检测图片,因为我们的要求是检测大小接近的图,所以我把检测半径范围规定在很小的范围内,这样的话会极大地加快速度!!所以这才是致胜的关键!! ?...BW = edge(I,'sobel'); [m,n]=size(BW); % 步长为1,即每次检测的时候增加的半径长度 step_r = 1; %检测的时候每次转过的角度 step_angle...:参数空间,h(a,b,r)表示圆心在(a,b)半径为r的圆上的点数 % hough_circl:二值图像,检测到的圆 % para:检测到的圆的圆心、半径 circleParaXYR...对于多个圆的检测,阈值要设的小一点!
边缘检测的一般标准 边缘检测有下面几个标准:(1) 以低的错误率检测边缘,也即意味着需要尽可能准确的捕获图像中尽可能多的边缘。(2) 检测到的边缘应精确定位在真实边缘的中心。...Canny算子边缘检测步骤 有了上面的铺垫,我们来到今天的主题,我们直接来看一下基于Canny算子进行边缘检测的步骤,我会在第6节详细讲解每一个步骤。...基于Canny算子边缘检测的步骤如下: 使用高斯滤波算法,以平滑图像,滤除噪声 计算图像中每个像素点的梯度强度和方向 应用非极大值抑制,以消除边缘检测带来的杂散响应 应用双阈值检测来确定真正的边缘和潜在的边缘...关于Sobel算子的构造请看昨天的推文:OpenCV图像处理专栏十八 | 手动构造Sobel算子完成边缘检测 7.3 应用非极大值抑制,以消除边缘检测带来的杂散响应 非极大值抑制是一种边缘稀疏技术,作用在于瘦边...结论 本文介绍了图像处理算法中最常用的边缘检测算法的原理以及一个C++复现,然而可惜的是效果没有OpenCV自带算法的效果好,并且速度也会稍慢,一定是某个细节没有处理完美,但作为科普来讲大概已经够用了,
大家好,又见面了,我是你们的朋友全栈君。 一、imfinfo函数——查看图像文件信息,注意参数是文件路径和文件名,不是图像对应的矩阵。...I Matlab代码: >> I=imread('2.jpg'); >> imshow(I) 显示结果 2、imshow(I,[low high]) 它显示的是像素处理后的图像I,注意的是它只是显示的时候改变了图像像素...,实际上并没有改变图像像素,图像像素值还是原来的值。...Matlab代码: >> I=imread('2.jpg'); >> imshow(I,[0 80]) 它对图像像素的处理是:将I中像素值大于等于high变成high,将小于等于low的变成low,再将...我们在这里做一个实验:下面三幅图分别为imshow(I),imshow(I,[])和把图像像素值映射为[0,255]所显示的图像。
import numpy as np #用于处理图像矩阵、算子矩阵及相关运算 from PIL import Image #图像处理模块 import matplotlib.pyplot as plt...0~255 image_xy=(255.0/image_xy.max())*image_xy ''' 输出图像边缘检测结果。...其中,参数为image_array时输出为原图的灰度图像, 参数为image_x时输出为原图的x方向导数图像, 参数为image_y时输出为原图的y方向导数图像, 参数为image_xy时输出为原图的梯度图像...plt.axis("off") plt.subplot(2,2,4) plt.imshow(image_xy,cmap=plt.cm.gray) plt.axis("off") plt.show() 算法:基于...Prewitt算子的图像边缘检测是利用两个方向模板与图像进行邻域卷积(Adjacent Convolution)运算来完成图像边缘检测。
它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。...通常情况下对于色彩均衡的图像,直接将阈值设为127即可,但有时图像灰度级的分布是不均衡的,如果此时还将阈值设为127,那么阈值处理的结果就是失败的。所以需要找出图像的最佳的分割阈值。...它被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用。它是按图像的灰度特性,将图像分成背景和前景两部分。...显然,这样的阈值处理结果不是我们想要的,所以需要使用变化的阈值对图像进行分割,这种技术称为自适应阈值处理方式。...基于OpenCV的实现 c++实现 1.
“在振动噪音的测试分析过程中,获得准确的转轴、发动机或电机的转速是良好数据分析的基础。...本文将介绍通过传感器采集到的周期脉冲信号来计算转轴、发动机或电机转速的基本算法” 01 — 传感器采集的原始信号 图1是通过激光测速传感器测量转轴转速的示意图。...图3 基于传感器采集到的信号来计算转速,有两个很重要的参数:1)触发条件,包括触发值( Trig Level ),触发方向 (Up/Down)。...03 — 总结 计算转速时,有以下几点需要注意: 1)传感器信号的采样频率Fs要根据被测的最高转速及skip数来制定。图6(高转速)中的采样频率较为合适。...图7 以上是基于传感器信号的转速计算算例。后续会介绍基于振动信号阶次切片的转速值反算。 另外,通过设置触发条件判断关键位置的算法在图像识别判断边界上也会经常用到,后续也会通过算例详细讲解。
import matplotlib.pyplot as plt#图像数据可视化模块 import matplotlib.cm as cm#图像色彩映射模块 import numpy as np#算子与图像矩阵处理模块...1,j+1]]<TH).any()): DT[i,j]=1 plt.subplot(2,2,1) plt.imshow(new_gray,cmap=cm.gray)#从原图转化的灰度图像...plt.axis("off") plt.subplot(2,2,2) plt.imshow(d,cmap=cm.gray)#高斯滤波后的灰度图像 plt.axis("off") plt.subplot...)#双阈值检测边缘图像 plt.axis("off") plt.show() 算法:基于Canny算子的图像边缘检测是首先原始图像灰度化,然后进行高斯平滑滤波,接着计算梯度幅值和方向,再对梯度幅值进行非极大值抑制...(Non-Maximum Suppression,NMS),最后使用双阈值法检测和连接边缘。
import numpy as np #主要用于算子和图像矩阵处理 from PIL import Image #主要用于图像导入 import matplotlib.pyplot as plt #...用于数据可视化处理 import matplotlib.cm as cm #用于色彩映射 import scipy.signal as signal #主要用于卷积计算 #定义x方向的Sobel算子 operator_x...image_xy=np.sqrt(image_x**2+image_y**2) #将梯度矩阵各元素归一化为0~255 image_xy=(255.0/image_xy.max())*image_xy #输出边缘检测图像...plt.axis("off") plt.subplot(2,2,4) plt.imshow(image_xy,cmap=cm.gray) plt.axis("off") plt.show() 算法:基于...Sobel算子的图像边缘检测是使用像素邻近区域梯度值计算1个像素梯度值和根据绝对值来取舍进行图像边缘检测。
import numpy as np #主要用于算子和图像矩阵处理 from PIL import Image #主要用于图像导入 import matplotlib.pyplot as plt #...用于数据可视化处理 import matplotlib.cm as cm #用于色彩映射 import scipy.signal as signal #主要用于卷积计算 #定义Laplace算子 Operator1...plt.axis("off") plt.subplot(2,2,4) plt.imshow(image_oper2,cmap=cm.gray) plt.axis("off") plt.show() 算法:基于...Laplace算子的图像边缘检测是应用于仅考虑边缘位置而不考虑其周围的像素灰度差值的图像边缘检测。...Laplace算子是二阶微分算子,是一个x方向的二阶导数和y方向的二阶导数之和近似微分。
])# 定义神经网络输入层图片的大小image_size = 299# preprocess_for_train为图像预处理程序distorted_image = preprocess_for_train...(decoded_image, image_size, image_size, None)# 将处理后的图像和标签数据通过tf.train.shuffle_batch整理成神经网络训练时# 需要的batch...在读取样例数据之后,需要将图像进行预处理。图像预处理的过程也会通过tf.train.shuffle_batch提供的机制并行地跑在多个线程中。...输入数据处理流程的最后通过tf.train.shuffle_batch函数将处理好的单个输入样例整理成batch提供给神经网络的输入层。...通过这种方式,可以有效地提高数据预处理的效率,避免数据预处理为神经网络模型训练过程中的性能瓶颈。?
对每一条数据进行处理后,map将处理后的数据包装成一个新的数据集返回,map函数非常灵活,可以用于对数据的任何预处理操作。...在训练时,调用preprocess_for_train 方法对图像进行随机反转等预处理操作;而在测试时,测试数据以原本的样子直接输入测试。...这里假设image中存储的是图像的原始数据,# label为该样例所对应的标签。height、width和channel给出了图片的维度。...# preprocess_for_train为之前介绍的图像预处理程序,因为上一个map得到的数据集中提供了# decoded_image和label两个结果,所以这个map需要提供一个有2个参数的函数来...在这个lambda表达式中# 我们首先将decoded_image在传入preprocess_for_train来进一步对图像数据进行预处理。# 然后再将处理好的图像和label组成最终输出。
在上一期的文章中,我们学习了图像的滤波知识,了解到滤波的作用之一就是降噪,因此,滤波成为了众多图像处理任务中的首要操作,大家切记哦,今天,我们继续来学习图像的新知识--边缘检测。...一、边缘检测 1.边缘检测简介 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。...这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。...以上用一句话总结:边缘检测实际就是检测图像中亮度变化有区别或者较大的地方,实际效果表现为图像中的轮廓检测。...,计算图像梯度,非极大值抑制 ,阈值筛选是个步骤构成,换句话说,只要使用这个算法,我们就会经过四个处理步骤,幸运的是,OpenCV已经为我们实现了这个函数,只要调用就可以了,一起来看看吧!
目前主要算法分两类:1) 候选区域/框 + 深度学习分类;2) 基于深度学习的回归方法 目标检测中有很大一部分工作是做图像分类。...Girshick)使用 Region Proposal + CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。 ?...Fast-RCNN 很重要的一个贡献是成功的让人们看到了 Region Proposal + CNN 这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度,也为后来的 Faster...以上四种算法都基于region proposal 的R-CNN系列,是目标检测技术领域主要的一个分支。...YOLO将目标检测任务转换成一个回归问题,大大加快了检测的速度,使得 YOLO 可以每秒处理45 张图像。
导读 本文给大家分享一个用OpenCV传统方法实现形状检测的小案例。...背景介绍 实例来源:https://github.com/akshaybhatia10/ComputerVision-Projects/tree/master/FindShapes 其中典型的测试图片如下...: 上图中包含了矩形、正方形、三角形、圆形和五角形共5种形状,我们的目的是将其定位并标注对应的形状,效果如下: 实现步骤 【1】 图片转为灰度图,做二值化。...width * 1.0 / height) >= 0.95 and abs(width * 1.0 / height) <= 1.05: ② 区分星形(四角形/五角形)和正多边形(正八边形/正十边形)除了检测边数还可以加上凸包缺陷计算...,可以将二者很好的区分; ③ 上面虽然是比较简单的图形,但是方法和思想可以共用,大家可以将自己的图像先处理简单后再做识别,必要时可以使用角点、夹角、凸包缺陷等方法; 测试图片与源码下载链接: https
依然要感激如此美丽的封面图片。 在“基于深度学习的图像目标检测(上)”里面, 我们详细介绍了R-CNN走到端到端模型的Faster R-CNN的进化流程。...选择好不同位子的特征,再整合起来, 得到在不同位子点确认的特征, 再做Pooling,通过Pooling进行投票。 这样的效果就是, 把特征计算放在前面, 而把位置信息拼接投票放在最后处理。...速度快, 效果好的均衡下的推荐选择。 R-FCN问题: 依然无法实现视频基本的实时(每秒24帧图像)。...: 整个过程循环迭代, 直到检测的比较精准为止。...G-CNN问题: 速度依然太慢,难以实时应用 ION Inside-Outside Net是提出基于RNN的上下文的目标检测方法。
为了检测边缘,我们需要检测图像中的不连续性,可以使用图像梯度来检测不连续性。但是,图像梯度也会受到噪声的影响,因此建议先对图像进行平滑处理。 本文目录: 1....基于OpenCV的实现 Sobel算子函数 Scharr算子 Laplacian算子 一、图像梯度与几种算子 “滤波器”也可以称为“卷积核”,“掩膜”,“算子”等。...Canny边缘检测是从不同视觉对象中提取有用的结构信息并大大减少要处理的数据量的一种技术,目前已广泛应用于各种计算机视觉系统。...如果该点是方向上的局部最大值,则保留该点 如果不是,则将其置为0 对图像进行梯度计算后,仅仅基于梯度值提取的边缘仍然很模糊。对边缘有且应当只有一个准确的响应。...关于参数ddepth: 该值为-1时,让处理结果与原始图像保持一致,但是直接将ddepth设置为-1,得到的结果可能是错误的。
对于要展示的商品图片而言,我们对图片本身的质量要求会比较高,例如不能将模糊不清的图片进行展示。因此,需要一种图像模糊检测的方法,便于我们筛选出可用的图片。...我们使用基于 Laplacian 的算法来检测图片是否模糊。调用它比较简单,因为 OpenCV 内置了 Laplacian 函数。...图像模糊检测算法 算法的主要思想:先将图像转换成灰度图像,然后单一通道的灰度图像经过刚才计算出来的拉普拉斯 3x3 卷积核计算后会得到一个响应图,最后再计算这个响应图的方差。...基于该方差和按照经验设定的阈值进行比较,就可以判断图像是否模糊。对于同一种类型的商品图片,可以采用同一个阈值。不同的商品、不同环境拍摄的图片可能需要调整阈值。...最后,我们团队主要使用的语言是 Java/Kotlin,还需要编写一个 jni 来调用该函数。 总结 在无参考图像的情况下,Laplacian 是一种常见的图像模糊检测的方式。