项目介绍 基于人脸识别的门禁管理系统 (Python+Django+RESTframework+JsonWebToken+Redis+Dlib) 该项目为宿舍门禁系统管理,并额外加入宿舍管理、水电费管理...、在线充值、报修管理、系统日志等多项功能,详细见下方截图等。...Django为后端、H5/CSS/JS为前端、MySQL为后端数据库、Redis为缓存、Dlib为人脸识别程序库。 该项目可作为个人学校毕业设计使用,未考虑生产环境,后续开发随心。...MySQL数据库使用5.7.27开发,建议使用相同版本(应该mysqlclient有向上兼容 项目自带Windows系统调试用Redis-x64-3.2.100,默认监听127.0.0.1,6379端口...登录绑定) 4、生成数据表(像运行正常的Django项目一样使用指令) python manage.py makemigrations python manage.py migrate 5、导入初始系统设置数据
然而,假如你尝试这样简单地从一张普通图片直接进行人脸识别的话,你将会至少损失10%的准确率! 在一个人脸识别系统中,应用多种预处理技术对将要识别的图片进行标准化处理是极其重要的。...为简单起见,我展示给你的人脸识别系统是使用灰度图像的特征脸方法。...我们使用“主元分析”把你的200张训练图片转换成一个代表这些训练图片主要区别的“特征脸”集。首先它将会通过获取每个像素的平均值,生成这些图片的“平均人脸图片”。然后特征脸将会与“平均人脸”比较。...第一个特征脸是最主要的脸部区别,第二个特征脸是第二重要的脸部区别,等……直到你有了大约50张代表大多数训练集图片的区别的特征脸。...,特征值 识别的过程 1.
OpenCV 中提供了关于人脸识别的算法,它主要使用 Haar 级联的概念。...1.Haar 特征 人脸识别使用 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与 已知对象是否匹配。...这些计算是重复的,因为遍历图 像时反复遍历了同一个像素点,而这会导致系统运行速度缓慢且效率低下,并且这对构建一个 实时的人脸识别系统来说是不可行的,因为卡顿会造成用户体验不好的情况。...3.Haar 级联 Haar 级联是一个基于 Haar 特征的级联分类器,级联分类器能够把弱分类器串联成强分 类器。弱分类器可以理解为性能受限的分类器,它们没有办法正确地区分所有事物。...如果试图获得更 精确的结果,那么最终系统就会变成计算密集型,但运行速度慢的系统。精确度和速度的取舍 在机器学习中十分常见。将一些弱分类器串联成一个统一的强分类器可以解决这个问题。
://github.com/mk-minchul/AdaFace拿到人脸特征向量可以用于获取人脸相似度,通过两个人脸向量的余弦相似度得分AdaFace 简单介绍低质量人脸数据集中的识别具有挑战性,因为人脸属性被模糊和降级...基于裕量的损失函数的进步提高了嵌入空间中人脸的可辨别性。此外,以前的研究已经研究了适应性损失的影响,以更加重视错误分类的(硬)例子。在这项工作中,我们介绍了损失函数自适应性的另一个方面,即图像质量。...具体来说,简单和硬样品的相对重要性应基于样品的图像质量。我们提出了一种新的损失函数,该函数根据图像质量强调不同难度的样本。我们的方法通过用特征范数近似图像质量,以自适应裕量函数的形式实现这一点。...大量的实验表明,我们的方法AdaFace在四个数据集(IJB-B,IJB-C,IJB-S和TinyFace)上提高了最先进的(SoTA)的人脸识别性能。...关于 AdaFace 更多信息见: https://github.com/mk-minchul/AdaFace详细信息可以看 AdaFace 的项目,或者我之前的文章,有一个结合作者 代码写的完整的人脸识别的
1 # 识别眼睛、嘴巴、人脸 2 image = cv2.imread('....face_zone: 13 cv2.rectangle(image, pt1=(x,y),pt2=(x+w,y+h), color=[0,0,255],thickness=2) 14 15 # 人脸切分...destroyAllWindows() 代码第一行: 导入图片 第二行: 灰度化处理 第六--九行: 读取特征数据,并使用分类器对特征数据进行处理 第十--十三行: 进行人脸识别... 第十五--二十一行: 进行人脸切分,在上部分识别眼睛;人脸下部分识别嘴的预处理 第二十三--二十五行: 识别眼睛 第二十八--三十行: 识别嘴 将人脸眼睛替换成自定义眼睛:
作者丨孙裕道 编辑丨极市平台 导读 人脸识别的可解释性是深度学习领域中的一个很大挑战,当前的方法通常缺乏网络比较和量化可解释结果的真相。...自然深度学习中的很重要领域人脸识别的可解释性也是一个很大的挑战,当前在这方面探索的方法有网络注意力、网络解剖或综合语言解释,然而,缺乏网络比较和量化可解释结果的真相,尤其是在人脸识别中近亲或近亲之间的差异很微妙...论文贡献 该论文的贡献可以归结为如下三点,分别如下所示 XFR baseline:作者基于五种网络注意力算法为XFR(人脸识别的可解释性)提供了baseline,并在三个用于人脸识别的公开深度卷积网络上进行了评估...图像修复游戏协议和数据集:作者提供标准化评估协议和数据集,用于细粒度的人脸识别可视化。这为客观地比较XFR系统提供了一个量化指标。...模型介绍 人脸识别的可解释性(XFR) 该论文的创新点可能是从Facenet中得到一定的灵感。XFR的目的是解释人脸图像之间的匹配的内在关系。
[深度应用]·基于卷积神经网络人脸识别的原理及应用开发(转) 这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值...输出:“校准”过的只含有人脸的图像 对于输入的原始图像 + bounding box,这一步要做的事情就是要检测人脸中的关键点,然后根据这些关键点对人脸做对齐校准。...但在图中靠中心的位置,各个类别的距离都很近。 那么训练人脸特征表示的正确姿势是什么?其实有很多种方法。一种方法就是使用“center loss”。...需要特别指出的是,人脸相关的问题是一个比较大的方向,一篇文章显然是说不清楚的,这里只是基于OpenFace,对比较重要的方法还有名词做了一个解释。...实际上也可以换用精度更高的深度学习相关方法,比如在中科院山世光老师开源的人脸识别引擎seetaface/SeetaFaceEngine中,Face Alignment使用就是一个基于autoencoder
既有人脸图像的批量导入:即将通过各种方式采集好的人脸图像批量导入至人脸识别系统,系统会自动完成逐个人脸图像的采集工作。...人脸识别: 我们可以在人脸识别系统中设定一个人脸相似程度的数值,再将对应的人脸图像与系统数据库中的所有人脸图像进行比对,若超过了预设的相似数值,那么系统将会把超过的人脸图像逐个输出,此时我们就需要根据人脸图像的相似程度高低和人脸本身的身份信息来进行精确筛选...活体鉴别: 生物特征识别的共同问题之一就是要区别该信号是否来自于真正的生物体,比如,指纹识别系统需要区别带识别的指纹是来自于人的手指还是指纹手套,人脸识别系统所采集到的人脸图像,是来自于真实的人脸还是含有人脸的照片...基于几何特征的方法: 基于几何特征识别的流程大体如下:首先对人脸面部的各个特征点及其位置进行检测, 如鼻子、嘴巴和眼睛等位置,然后计算这些特征之间的距离,得到可以表达每个特征脸的矢量特征信息,例如眼睛的位置...将图像变换到另一个空间后,同一个类别的图像会聚到一起,不同类别的图像会聚力比较远,在原像素空间中不同类别的图像在分布上很难用简单的线或者面切分,变换到另一个空间,就可以很好的把他们分开了。
我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。...这一步要做的事情就是要检测人脸中的关键点,然后根据这些关键点对人脸做对齐校准。...但在图中靠中心的位置,各个类别的距离都很近。 那么训练人脸特征表示的正确姿势是什么?其实有很多种方法。一种方法就是使用“center loss”。...需要特别指出的是,人脸相关的问题是一个比较大的方向,一篇文章显然是说不清楚的,这里只是基于OpenFace,对比较重要的方法还有名词做了一个解释。...实际上也可以换用精度更高的深度学习相关方法,比如在中科院山世光老师开源的人脸识别引擎seetaface/SeetaFaceEngine中,Face Alignment使用就是一个基于autoencoder
Openface人脸识别的原理与过程: https://zhuanlan.zhihu.com/p/24567586 原理可参考如下论文: 《OpenFace: A general-purpose face...recognition library with mobile applications》 第一步:找出所有的面孔 我们流水线的第一步是人脸检测。...最终的结果是,我们把原始图像转换成了一个非常简单的表达形式,这种表达形式可以用一种简单的方式来捕获面部的基本结构: 利用HOG去detector人脸 ?...第四步:从编码中找出人的名字 面部识别分类器:基于简单线性SVM 总结: 1.使用HOG算法给图片编码,以创建图片的简化版本。使用这个简化的图像,找到其中看起来最像通用HOG面部编码的部分。
人 脸 识 别 主 要 为 两 个 步 骤:人 脸 检 测(FaceDetection)和人脸识别(Face Recogniton)。...本项目基于天嵌的 TQ2440(采用 S3C2440 处理器)硬件开发平台,扩展 USB 摄像头模块,搭建配置嵌入式开发环境,给出并实现了一个嵌入式人脸识别实现方案。...,最后结合最近邻匹配算法实现在线人脸识别,实际采集的图片测试结果表明该系统效果良好。...(四)人脸识别 特征提取是人脸识别的关键问题之一。PCA 是一种数据降维方法,它将数据维数高的样本用尽可能少的特征向量去描述,以达到压缩数据的目的 [9]。...软件设计部分,自动人脸识别的大概过程如下: step1:摄像头采集图像; step2:平滑处理、灰度均衡; step3:图像中的人脸检测与定位; step4:归一化处理,并载入样本人脸库数据; step5
图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。机器学习领域一般将此类识别问题转化为分类问题。 手写识别是常见的图像识别任务。
公司之前一直使用基于指纹的上下班签到机制,疫情期间为了减少人员接触开始改用人脸打卡。当时以为只是应急用一下,疫情有一两个月就结束了,使用的第三方的人脸打卡程序。...公司希望实现自己的基于人脸打卡程序,这个重任当然就落到了我们开发部上,虽然没经验但咱们做为一个涉身职场多年的老将不能说不行啊。...,建设基础照片人只有一个需要识别的人脸。...# 可以前往这里按你的系统进行下载,对于类Linux系统推荐使用.run的方式下载完整文件 [root@faceid ~]# wget https://developer.nvidia.com/compute...通过上面的教程,我们可以进行一下扩展利用人脸识别的技术。
我先大概说下该领域遇到的一些问题: 1 图像质量:人脸识别系统的主要要求是期望高质量的人脸图像,而质量好的图像则在期望条件下被采集,图像质量对于提取图像特征很重要,因此,即使是最好的识别算法也会受图像质量下降的影响...基于特征方法的人脸检测 基于特征的方法实质就是利用人脸的等先验知识导出的规则进行人脸检测。...,这种规律性在不同类别的纹理中有其不同特点; ③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究...基于模板的方法 基于模板匹配的方法的思路就是通过计算人脸模板和待检测图像之间的相关性来实现人脸检测功能的,按照人脸模型的类型可以分为两种情况: ① 基于通用模板的方法,这种方法主要是使用人工定义的方法来给出人脸通用模板...基于统计理论的方法 基于统计理论的方法是指利用统计分析与机器学习的方法分别寻找人脸与非人脸样本特征,利用这些特征构建分类,使用分类进行人脸检测。
//github.com/mk-minchul/AdaFace 拿到人脸特征向量可以用于获取人脸相似度,通过两个人脸向量的余弦相似度得分 AdaFace 简单介绍 低质量人脸数据集中的识别具有挑战性,因为人脸属性被模糊和降级...基于裕量的损失函数的进步提高了嵌入空间中人脸的可辨别性。 此外,以前的研究已经研究了适应性损失的影响,以更加重视错误分类的(硬)例子。在这项工作中,我们介绍了损失函数自适应性的另一个方面,即图像质量。...具体来说,简单和硬样品的相对重要性应基于样品的图像质量。 我们提出了一种新的损失函数,该函数根据图像质量强调不同难度的样本。我们的方法通过用特征范数近似图像质量,以自适应裕量函数的形式实现这一点。...大量的实验表明,我们的方法AdaFace在四个数据集(IJB-B,IJB-C,IJB-S和TinyFace)上提高了最先进的(SoTA)的人脸识别性能。...关于 AdaFace 更多信息见:https://github.com/mk-minchul/AdaFace 详细信息可以看 AdaFace 的项目,或者我之前的文章,有一个结合作者 代码写的完整的人脸识别的
这样重大的事情,安智客急不可耐地想进行学习了解,这里有三个关键词:安全、人脸识别、支付,安全是整体的安全方案,达到金融级别的安全,人脸识别是指包括算法在内的软硬件,支付就是基于IFAA技术方案的人脸识别进行支付...什么是金融级别的人脸识别支付? 首先从各种人脸识别安全标准中去了解什么是金融级别?...目前已经发布或正在起草的的有关人脸识别相关安全技术标准有(非完全统计): 正在起草 信息安全技术 人脸识别认证系统安全技术要求 正在起草 信息技术 移动设备生物特征识别 第3部分:人脸 正在公示 信息安全技术...基于可信环境的远程人脸识别认证系统技术要求 即将实施 公共安全技术 人脸识别应用 图像技术要求 已经实行 GA/T 1212-2014 安防人脸识别应用防假体攻击测试方法 最近由泰尔实验室领头起草的...之前介绍的基于可信环境的远程人脸识别认证系统技术要求,将安全要求对应安全等级保护的EAL3+和EAL4+分别分为基本级和增强级。
我先大概说下该领域遇到的一些问题: 1 图像质量:人脸识别系统的主要要求是期望高质量的人脸图像,而质量好的图像则在期望条件下被采集,图像质量对于提取图像特征很重要,因此,即使是最好的识别算法也会受图像质量下降的影响...基于特征方法的人脸检测 基于特征的方法实质就是利用人脸的等先验知识导出的规则进行人脸检测。...,这种规律性在不同类别的纹理中有其不同特点; ③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究...基于模板的方法 基于模板匹配的方法的思路就是通过计算人脸模板和待检测图像之间的相关性来实现人脸检测功能的,按照人脸模型的类型可以分为两种情况: ① 基于通用模板的方法,这种方法主要是使用人工定义的方法来给出人脸通用模板...下期我将带大家一起去回顾近几年人脸检测&识别的新框架,及创新点、优缺点,并附上开源代码,希望大家都可以动手自己去实践。
概述 本项目基于tensorflow机器学习,实现web端人脸识别登陆,人脸注册。 提供手机端页面(face_login_app)和网页端页面(vue_element-admin)。...功能 软件架构 tensorflow 用于人脸识别的机器学习 vue web端开发 redis 保存token,因为方便失效 MongoDB 保存人脸已编码的数据和用户信息 flask 用于开发web...接口,和返回静态页面 face_recognition 人脸识别python库,可以从照片中识别人脸 使用 更新记录 下载文章文字内容到txt 下载文章图片 保存HTML文件,并将图片链接指向本地...生成模型,验证图片等 face_login_app 文件夹中保存移动端代码,使用weui+vue,build后的dist代码放入到APP的dist中 vue-element-admin 文件夹为网页边人脸识别登陆前端代码
人脸识别是目前机器视觉最成功的一个领域了,有许多的人脸检测与识别算法以及人脸识别的函数库。...对于入门深度学习来说,从头开始一步一步训练出一个自己的人脸识别项目对你学习深度学习是非常有帮助的,但是在学习之前何不用人脸识别的函数库来体验一下快速搭建人脸识别系统的成就感,也为后续学习提供动力。...目前人脸识别的api有旷视、百度等,今天我们使用的是Amazon Rekognition提供的api来搭建人脸识别,通过这个api只需要编写一个简单的python脚本就可以进行人脸检测和人脸识别。...现在我们可以开始使用Rekognition对给定图像进行面部识别,以下是识别的代码: import io rekognition = boto3.client('rekognition') image...为了实现这一点,我们需要使用亚马逊的“ 基于存储的API操作””。此类操作有两个特定于亚马逊的术语。“集合”是一个虚拟空间,其中Rekognition存储有关检测到的面部的信息。
领取专属 10元无门槛券
手把手带您无忧上云