首页
学习
活动
专区
圈层
工具
发布

在 Linkerd 中实现流量拆分功能

在 Linkerd 中,金丝雀发布是通过流量拆分来管理的,这项功能允许你根据可动态配置的权重,将请求分配给不同的 Kubernetes 服务对象。...创建这两个服务后,我们将创建一个 TrafficSplit 资源,该资源会将发送到 apex 服务的流量在 web 服务的原始版本和更新版本之间进行拆分。...在实际工作中,我们可以先将 web-svc-2 的权重设置为 1%的或者很低的权重开始,以确保没有错误,然后当我们确定新版本没有问题后,可以调整慢慢调整每个服务的权重,到最终所有流量都切换到新版本上面去...web-svc-ts web-apex web-svc-2 750 94.12% 1.4rps 2ms 8ms 10ms 在输出中...在实践中我们往往还会将 Linkerd 的流量拆分功能与 CI/CD 系统进行集成,以自动化发布过程,Linkerd 本身就提供了相关指标,这结合起来是不是就可以实现渐进式交付了:通过将指标和流量拆分捆绑在一起

1.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MySQL在Square的拆分实践

    现在所有的交易相关信息存储在MySQL中。这种电商类的网站,整体规模及也有一些值得学习的地方。 下面一起看看Square在MySQL方面的经验。...业务请求也集中一个IDC内完成,当当前的IDC不用时,才切换到其它IDC中。 在设计上拒绝大库。 2. 高可用切换使用基于域名和VIP结合的方式. 主节点担任更多的读写工作。...每个节点在不同的IDC中。利用GTID+Row格式复制,其中节点故障,如果需要重建,首先借助 备份重建,如果备份完成,借助于主库下面的从节点备份后重建。...整体结构如下: 标准化每个集群,做到多IDC中可用,这个可用,实质上是多IDC提供容灾能力,其它IDC不提供写能力。 3. 备份上使用percona的xtrabackup备份。...从应用层考虑拆分 11. 限制每个应用拆分的DB大小在1TB以内 12. 保持较小的集群, 拒绝大实例 13. 自动化每一个操作 14. 监控MySQL活着或是死掉,复制是不是正常 15.

    1.5K30

    在VSCode中调用Jupyterlab和R

    details/122304257安装完成并连接服务器之后,我们需要安装一些拓展程序:Chinese (Simplified),Python和Jupyter插件:VScode登录上服务器之后,我们可以在终端或者左侧目录中创建文件...这时候我们就需要VScode中的一些插件来方便我们写代码。我们直接在左侧的拓展中搜索R,然后安装即可。...然后是代码补全:当我们把鼠标放到函数上时,还能看到帮助文档:如果需要直接在jupyter中安装R的内核,可以直接在终端打开的R中进行操作:install.packages('IRkernel')IRkernel...总结总的来说,R语言的IDE中,Rstudio是最为常用和流行的。而JupyterLab则更多地被应用在Python数据分析领域。...在本文中,我们介绍了如何通过安装插件,在VS Code中远程连接服务器,并愉快地开始编写Python和R代码。

    3.6K10

    MySQL在Square的拆分实践

    现在所有的交易相关信息都存储在MySQL中。这种电商类的网站,整体规模也有一些值得学习的地方。 下面一起看看Square在MySQL方面的经验。...每天低于43s,全年4个小时23分的停机 最大的成功之处: 把每个库控制在一定的大小之下(1T以下),拒绝出现大库大实例。...业务请求也集中在一个IDC内完成,当前的IDC不用时,才切换到其它IDC中。 在设计上拒绝大库。 高可用切换使用基于域名和VIP结合的方式。主节点承担更多的读写工作。...每个节点在不同的IDC中。利用GTID+Row格式复制,其中节点故障,如果需要重建,首先借助备份重建,如果备份完成,借助主库下面的从节点备份后重建。...从应用层考虑拆分 11. 限制每个应用拆分的DB大小在1TB以内 12. 保持较小的集群, 拒绝大实例 13. 自动化每一个操作 14. 监控MySQL活着或是死掉,复制是不是正常 15.

    98030

    R语言字符串处理①R语言字符串合并与拆分

    R基础字符串处理函数 nchar paste strsplit tolower toupper casefold chartr gsub sub substr substring grep grepl...regexpr R包stringr 字符串处理学习思路 拼接 对应拼接,如 (‘a’,’b’)+(‘c’,’d’) → (‘ac’,’bd’) 多拼为一,如 (‘a’,’cd’,’m’)...替换 提取} 拼接->{多拼为一 对应拼接} 替换->{根据位置 根据pattern(正则表达式)} 提取->{根据位置 根据pattern(正则表达式)}}") R语言字符串合并与拆分...#合并数据框中的某几列 separate #将数据框中某一列按照某种模式拆分成几列 a <- c("2016-2-7","2016-3-8","2016-4-9","2017-5-...10") b <- c("ahdbca","bhdafb") nchar(a) # 计算字符串中字符个数 paste(a,b,sep="--") # 对应拼接 paste(a,collapse =

    7.1K20

    在 Linkerd2 中进行流量拆分

    最新发布的 Linkerd 2.4,加入了对流量拆分的支持。 安装最新版本之后,可以看到这个流量拆分功能所使用的 API 资源并非来自 Linkerd,而是 SMI 规范的一部分。...| grep -i split trafficsplits ts split.smi-spec.io true TrafficSplit 和 Istio 的 Service + Selector 的拆分方式不同...例如我们要从 flaskapp 服务分流到 v1 和 v2 两个版本,在 Istio 中,需要定义一个 flaskapp 服务,然后使用标签,在 Service 的标签子集中,选择两组 Subset 作为目的地...而在 Linkerd/SMI 中,就需要分别定义三个服务了,例如 flaskapp、flaskapp-v1、flaskapp-v2。下面简单操练一下。...但是目前在 SMI 中并没有看到条件选择的相关内容,因此目前的功能可能还比较初级。可以通过 Flagger 的加持,实现更加复杂的功能。

    54620

    【R语言】因子在临床分组中的应用

    前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...☞R生成临床信息统计表 ☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 接下来我们先读入临床数据 #读取临床数据 clin=read.table("clinical.tsv...】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表 ☞玩转TCGA临床信息...☞TCGAbiolinks获取癌症临床信息 ☞肿瘤TNM分期 ☞R替换函数gsub

    4.9K21

    在VScode中对R语言进行环境配置

    阿磊打开了他的VSCode,开始在网上搜索如何在VSCode中安装R语言。他找到了一个教程,上面写着:“首先,你需要下载R语言。” 阿磊点点头,心想:“下载?这我擅长!”...于是他开始在浏览器中输入“R语言下载”,结果不小心输入成了“R语言美餐”,网页上出现了各种美食图片,阿磊看得直流口水,完全忘记了下载R语言的事情。...过了一会儿,阿磊终于意识到自己走神了,他重新输入了正确的关键词,找到了R语言的官方网站,下载并安装了R语言。接下来,教程告诉他需要在VSCode中安装R扩展。...阿磊终于可以开始他的R语言学习之旅了,虽然过程中有一些小插曲,但他学到了一个宝贵的教训:在安装软件和扩展时,一定要仔细阅读说明,不要被名字所迷惑。...设置中搜索 r.rterm.windows 填写radian的路径 设置里搜索 r.br, 选Radian为终端 在设置里搜索 httpgd 打勾 此外也可以用shell wind选取输出图像的终端样子

    2K10

    在 Linkerd2 中进行流量拆分

    最新发布的 Linkerd 2.4,加入了对流量拆分的支持。 安装最新版本之后,可以看到这个流量拆分功能所使用的 API 资源并非来自 Linkerd,而是 SMI 规范的一部分。...| grep -i split trafficsplits ts split.smi-spec.io true TrafficSplit 和 Istio 的 Service + Selector 的拆分方式不同...例如我们要从 flaskapp 服务分流到 v1 和 v2 两个版本,在 Istio 中,需要定义一个 flaskapp 服务,然后使用标签,在 Service 的标签子集中,选择两组 Subset 作为目的地...而在 Linkerd/SMI 中,就需要分别定义三个服务了,例如 flaskapp、flaskapp-v1、flaskapp-v2。下面简单操练一下。...但是目前在 SMI 中并没有看到条件选择的相关内容,因此目前的功能可能还比较初级。可以通过 Flagger 的加持,实现更加复杂的功能。 ----

    45720

    深度 | 在 R 中估计 GARCH 参数存在的问题

    这对我来说是个新闻,因为书籍经常引用 fGarch,所以这可能是那些寻求在 R 中使用 GARCH 模型的人的资源——为什么不要使用 fGarch。...在原假设下,滚珠轴承的平均直径不会改变,而在备择假设中,在制造过程中的某些未知点处,机器变得未校准并且滚珠轴承的平均直径发生变化。然后,检验在这两个假设之间做出决定。...我们希望将我们的检验应用于检测 GARCH 模型中的结构性变化,这是金融时间序列中的常见模型。据我所知,用于 GARCH 模型估计和推断(以及其他工作)的“最新技术” R 包是 fGarch。...我在本文中强调的问题让我更加意识到选择在优化方法中的重要性。我最初的目标是编写一个函数,用于根据 GARCH 模型中的结构性变化执行统计检验。...这是一个我自认知之甚少的主题,如果 R 社区中的某个人已经观察到了这种行为并且知道如何解决它,我希望他们会在评论或电子邮件中告诉我。

    7.9K10

    【推荐】在R中无缝集成Github云端代码托管

    在 Visual Studio中建立Github项目 在VS中使用Github可以说是一件轻松加愉快的事情,几乎不需要任何多余的设置。...在Damao这个项目中,大猫新建了两个脚本和dt、dt2两个数据集,并且用内置的浏览器同时打开这两个数据集。如下: ? 建立完项目后,接下来的任务就是要把我们的R代码上传到云端了!...在“change”列表中,我们可以看到我们新建了一个叫做01-test.R的脚本和一个叫做02-empirical.R的脚本,并且删除了一个叫做Script.R的脚本。...例如,白天在实验室的电脑上写程序,下班时上传至Github,回寝室以后直接点击刷新(Github在VS上不需要重复登陆)就可以在自己的笔记本上继续工作。...下图就是一个大猫实际编程中遇到的例子。左边是云端版本,右边是本地已经修改但是还没上传云端更新的版本。可以看到VS用绿色标记出了新增加的行,用红色标记出了删除的行,用斜线标记出了空白部分。

    2.8K40

    R8在Android手Q中的应用

    R8作为一个新工具,鲁棒性不如proguard,在面对手Q这个庞然大物时,出现了一些问题,本文主要分享一下R8在手Q应用遇到的问题,供后面有需要的同学参考。...也是在Enqueuer中实现,traceMainDex方法中;5、IRConvert , 将class字节码转换为Dex的过程,其中IR(Intermediate Representation)是java...三、R8在手Q应用中遇到的问题3.1 Liveness Analyze过程—根可达性算法在介绍补丁问题前,先简单介绍Liveness Analyze过程,后面的几个问题都和Liveness Analyze...理解根可达性算法前需要先理解四个概念:1、Root: 在proguard 配置文件中明确要keep的对象,算法的输入。...在使用R8过程中,我们发现同样的代码,构建多次,高概率出现不正常的dexDiff,具体表现如下:IDragview 的clinit方法有时候存在,有时不存在,导致生成的补丁不稳定。

    3K30

    在 R 中估计 GARCH 参数存在问题(基于 rugarch 包)

    一年前我写了一篇文章,关于在 R 中估计 GARCH(1, 1) 模型参数时遇到的问题。我记录了参数估计的行为(重点是 β ),以及使用 fGarch 计算这些估计值时发现的病态行为。...我在 R 社区呼吁帮助,包括通过 R Finance 邮件列表发送我的博客文章。 反馈没有让我感到失望。...他在 2016 年的车祸中丧生。 Dr....正如 Vivek Rao 在 R-SIG-Finance 邮件列表中所说,“最佳”估计是最大化似然函数(或等效地,对数似然函数)的估计,在上一篇文章中我忽略了检查对数似然函数值。...从这里开始,我们不应再仅仅关注两个序列,而是在两个模型生成的许多模拟序列中研究这些方法的表现。

    5K31
    领券