Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...可以看到表示 NaN 值的空单元格。可以通过单击单元格并编辑其值来编辑数据。只需单击特定列即可根据特定列对数据框进行排序。在下图中,我们可以通过单击fare 列对数据框进行排序。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。
在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...我们使用的数据是 1966 年至 2020 年的英国大选结果: image.png 自行绘制的数据 在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括: 运行最新版本的 Python...(用于 Linux、Mac 和 Windows 的说明) 确认你运行的是与这些库兼容的 Python 版本 数据可在线获得,并可使用 Pandas 导入: import pandas as pd df...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?...总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...pivot_table使用方法: pandas.pivot_table(*data*, *values=None*, *index=None*, *columns=None*, *aggfunc='mean...pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。
在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。 合并DF Pandas 使用 .merge() 方法来执行合并。...中concat() 方法在可以在垂直方向(axis=0)和水平方向(axis=1)上连接 DataFrame。...让我们看一个如何在 Pandas 中执行连接的示例; import pandas as pd # a dictionary to convert to a dataframe data1 =...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。
来源:Deephub Imba本文约1400字,建议阅读15分钟在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。...合并DF Pandas 使用 .merge() 方法来执行合并。...中concat() 方法在可以在垂直方向(axis=0)和水平方向(axis=1)上连接 DataFrame。...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。 编辑:王菁 校对:林亦霖
在 SQL 中,可以使用子查询来获取满足特定条件的数据。子查询是嵌套在主查询中的查询语句,它返回一个结果集,可以用来过滤主查询的结果。...下面是使用子查询来获取满足特定条件的数据的一般步骤: 在主查询中使用子查询,将子查询的结果作为条件。 子查询可以在主查询中的 WHERE 子句、FROM 子句或 HAVING 子句中使用。...子查询可以返回单个值或多个值,具体取决于使用的运算符和子查询的语法。 以下是一些示例: 使用子查询在 WHERE 子句中过滤数据: SELECT column1, column2, ......FROM (SELECT column FROM table WHERE condition) AS temp_table; 使用子查询在 HAVING 子句中过滤数据: SELECT column1,...FROM table GROUP BY column1 HAVING column1 > (SELECT AVG(column1) FROM table); 请注意,子查询的性能可能会较低,因此在设计查询时应谨慎使用
简介 为了更好的熟练掌握pandas在实际数据分析中的应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据的分析。...餐厅评分数据简介 数据的来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是: userID: 用户ID placeID:餐厅ID rating:总体评分 food_rating...:食物评分 service_rating:服务评分 我们使用pandas来读取数据: import numpy as np path = '.....如果我们关注的是不同餐厅的总评分和食物评分,我们可以先看下这些餐厅评分的平均数,这里我们使用pivot_table方法: mean_ratings = df.pivot_table(values=['...132583 4 132584 6 132594 5 132608 6 132609 5 132613 6 dtype: int64 如果投票人数太少,那么这些数据其实是不客观的
前面介绍过,通过readr、readxl两个包可以将文件中的数据读入为数据框。...其实,我们还可以在 R 里直接模拟出符合特定分布的数据,R 提取了一些以“r”开头的函数来实现,常见的有下面这 4 个: rnorm,生成服从正态分布的随机数 runif,生成均匀分布的随机数 rbinom...,生成服从二项分布的随机数 rpois,生成服从泊松分布的随机数 例如: r1 = rnorm(n = 1000, mean = 0, sd = 1) r2 = runif(n = 1000, min...rpois(n = 1000, lambda = 1) 正态分布 hist(r1) 均匀分布 hist(r2) 二项分布 hist(r3) 泊松分布 hist(r4) 写在最后 模拟数据有些时候是非常很有用的
在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...在 NumPy 中数据结构是围绕 ndarray 展开的,那么在 Pandas 中的核心数据结构是什么呢?...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...事实上,在 Python 里可以直接使用 SQL 语句来操作 Pandas。 这里给你介绍个工具:pandasql。...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。
事故已经发生了,但是我们可以从泰坦尼克号中的历史数据中发现一些数据规律吗?今天本文将会带领大家灵活的使用pandas来进行数据分析。...接下来我们来看一下怎么使用pandas来对其进行数据分析。...使用pandas对数据进行分析 引入依赖包 本文主要使用pandas和matplotlib,所以需要首先进行下面的通用设置: from numpy.random import randn import...pandas提供了一个read_csv方法可以很方便的读取一个csv数据,并将其转换为DataFrame: path = '.....: df['Age'].mean() 30.272590361445783 实际上有些数据是没有年龄的,我们可以使用平均数对其填充: clean_age1 = df['Age'].fillna(df['
有时需要保留特定版本的软件不升级,但升级其他软件,这时就需求用到下面的技巧。当CentOS/RHEL/Fedora下的Linux服务器使用 yum update 时命令如何排除选定的包呢?...Yum使用/etc/yum/yum.conf或/etc/yum.conf中的配置文件。您需要放置exclude指令来定义要更新或安装中排除的包列表。这应该是一个空格分隔的列表。...允许使用通配符*和?)。 当我使用yum update时,如何排除php和内核包?...打开/etc/yum.conf文件,输入: vi /etc/yum.conf 在[main]部分下面添加以下行,输入: exclude=php* kernel* 最后,它应如下所示: [ main ]...-exclude 命令行选项 最后,您可以使用以下语法在命令行上跳过yum命令更新: 注意:上述语法将按名称排除特定包,或者从所有存储库的更新中排除。
前言欢迎各位小伙伴一起继续学习,我们上期和大家简单的介绍了一下JupyterLab的使用,从今天开始我们就要正式开始pandas的学习了。...为了和大家能使用同样的数据进行学习,建议大家可以从国家统计局的网站上进行下载。...网站:国家数据 (stats.gov.cn)如何加载数据当我们有了数据后,如何读取它里面的内容呢我们在根目录下创建一个data的文件夹,用来保存我们的数据,本次演示使用的数据集是行政区划我们可以点击右上角的下载图标进行下载为了演示...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!...pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple/ 这里和我们平时安装基本一样,唯一的却别就是在命令行前面多了一个感叹号后面我们执行其他命令时
本文主要是关于pandas的一些基本用法。 #!.../usr/bin/env python # _*_ coding: utf-8 _*_ import pandas as pd import numpy as np # Test 1 # 定义序列,...pandas中的数据形式通常是float32或float64 s = pd.Series([1, 3, 5, np.nan, 44, 1]) print s print s[0] print s[3...A B C 0 1.0 Foo 3 1 1.0 Foo 3 2 1.0 Foo 3 3 1.0 Foo 3 # Test 4 # 查看DataFrame的数据类型...的描述 df.describe() # DataFrame的转置 df.T # DataFrame的index排序 df.sort_index(axis = 1) # DataFrame的index
本文内容:Python 数据处理:Pandas库的使用 ---- Python 数据处理:Pandas库的使用 1.Pandas 数据结构 1.1 Series 1.2 DataFrame 2.基本功能...- Pandas 是基于 NumPy 数组构建的,特别是基于数组的函数和不使用 for 循环的数据处理。...1.Pandas 数据结构 要使用 Pandas,首先就得熟悉它的两个主要数据结构:Series和DataFrame。...) print(obj.index) print(list(obj.index)) 也可以使用特定的索引: import pandas as pd obj2 = pd.Series([5,2,-3,1...选项: 方法 描述 'average' 默认:在相等分组中,为各个值分配平均排名 'min' 使用整个分组的最小排名 'max' 使用整个分组的最大排名 'first' 按值在原始数据中的出现顺序分配排名
在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...在 NumPy 中数据结构是围绕 ndarray 展开的,那么在 Pandas 中的核心数据结构是什么呢?...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...,即 n=2, m=3,在 plus 函数中使用到了 n 和 m,从而生成新的 df。...事实上,在 Python 里可以直接使用 SQL 语句来操作 Pandas。 这里给你介绍个工具:pandasql。
探索Pandas库在Excel数据处理中的应用 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。今天,我们将通过一个简单的示例来探索如何使用Pandas来处理Excel文件。...假设我们有一个名为data.xlsx的文件,我们可以使用以下代码来读取它: import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx'...) 读取指定Sheet的数据 如果我们只对特定的Sheet感兴趣,可以指定sheet_name参数来读取: # 读取指定sheet的数据 df2 = pd.read_excel('data.xlsx',...我们可以看到Pandas在处理Excel数据时的强大功能。...无论是数据的读取、修改、筛选还是保存,Pandas都提供了简洁而高效的方法。希望这个示例能帮助你更好地利用Pandas来处理你的数据。
本文将介绍以下6个经常使用的数据清理操作: 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型、删除不必要的列、数据不一致处理 第一步,让我们导入库和数据集。...plt.figure(figsize=(8, 6)) df["Product Price"].hist(bins=100) 在直方图中,可以看到大部分的价格数据都在0到500之间。...Pandas提供字符串方法来处理不一致的数据。 str.lower() & str.upper()这两个函数用于将字符串中的所有字符转换为小写或大写。...['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() replace()函数用于用新值替换DataFrame列中的特定值...使用pandas功能,数据科学家和数据分析师可以简化数据清理工作流程,并确保数据集的质量和完整性。 作者:Python Fundamentals
运行效果如下这个方法通常可以使用在确认数据是不是我们想要的,这时并不需要把所有的数据都显示出来,可以通过这个方法来查看前5行的数据即可。...,经常会出现入上图那样,在表格的上方会加一些说明性的文字,从而使我们的代码在执行的时候总是会出现一些奇怪的表现。...其实很简单,我们只需将他前两行跳过即可,你可以使用如下语句重新加载一次数据df = pd.read_excel(".....最新版本以及不支持了,这里就不介绍了)loc我们注意到,我们的excel表中并没有0~10的那列索引,这一列时pandas自动帮我们生成的,如果我们还想使用之前的指标那列作为索引该如何操作呢?...接下来我们就可以使用loc这个方法来获取指定行的数据了,例如我们获取县数(个)这行的数据df.loc["县数(个)"]可以看到,我们可以正常的获取到,如果要同时获取多行,只需修改列表中的参数即可这里需要注意的是我们使用的的是一个列表作为参数传给了
领取专属 10元无门槛券
手把手带您无忧上云