首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Matplotlib库在Python数据分析中的应用

Matplotlib是一个基于Python的绘图库,它提供了丰富的绘图工具和函数,可以用于生成高质量的、美观的数据可视化图形。...本文将详细介绍Matplotlib库的常用功能和应用场景,并通过实例演示其在Python数据分析中的具体应用。图片1. Matplotlib库概述Matplotlib是由John D....Hunter于2003年发起的一个开源项目,旨在提供一个类似于MATLAB的绘图工具包。Matplotlib建立在NumPy库的基础上,为Python提供了一种方便、灵活、高效的绘图方式。...基本绘图示例在数据分析中,常常需要通过图表来展示数据的分布、趋势等信息。Matplotlib提供了简单易用的API,可以快速绘制各种类型的图表。...本文详细介绍了Matplotlib库的常用功能和应用场景,并通过实例演示了它在Python数据分析中的具体应用。

1K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【R语言】因子在临床分组中的应用

    前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...☞R生成临床信息统计表 ☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 接下来我们先读入临床数据 #读取临床数据 clin=read.table("clinical.tsv...*","stage I/II",stage) #转换成因子 stage=factor(stage) stage 可以得到下面这个两分组的因子 方法二、直接使用factor函数 #删除组织病理学分期末尾的...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表

    3.3K21

    掌握pandas中的时序数据分组运算

    Python大数据分析 ❝本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes ❞ 1 简介 我们在使用...pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。...图1 2 在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始的意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用的都是「下采样」,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样

    3.4K10

    (数据科学学习手札128)在matplotlib中添加富文本的最佳方式

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介   长久以来,在使用matplotlib...进行绘图时,一直都没有比较方便的办法像R中的ggtext那样,向图像中插入整段的混合风格富文本内容,譬如下面的例子:   而几天前我在逛github的时候偶然发现了一个叫做flexitext的第三方库...,它设计了一套类似ggtext的语法方式,使得我们可以用一种特殊的语法在matplotlib中构建整段富文本,下面我们就来get它吧~ 2 使用flexitext在matplotlib中创建富文本   ...2.2 flexitext标签中的常用属性参数   在前面的例子中我们在标签中使用到了size、color、weight以及name等属性参数,而flexitext中标签支持的常用属性参数如下: 2.2.1...,关于matplotlib中的字体设置相关知识你可以参考我以前写过的搞定matplotlib中的字体设置https://www.cnblogs.com/feffery/p/14122415.html,下面分别演示系统自带的字体

    1.5K20

    Matplotlib与Seaborn在Python面试中的可视化题目

    数据可视化是数据分析与数据科学工作中的重要组成部分,而Matplotlib与Seaborn作为Python最常用的绘图库,其掌握程度直接影响到面试表现。...本篇博客将深入浅出地探讨Python面试中与Matplotlib、Seaborn相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。一、常见面试问题1....误用色彩:遵循色彩无障碍原则,避免使用色盲难以区分的颜色组合。过度复杂化:保持图形简洁,避免过多不必要的细节干扰信息传达。忽视数据比例:确保图形轴范围、刻度等与数据规模相匹配,避免视觉误导。...混淆Matplotlib与Seaborn功能:理解两者的定位与互补关系,合理选择使用。结语掌握Matplotlib与Seaborn是成为一名优秀Python数据分析师的必备技能。...深入理解上述常见问题、易错点及应对策略,结合实际代码示例,您将在面试中展现出出色的数据可视化能力与良好的审美素养。持续实践与学习,不断提升您的数据可视化技能,必将在数据分析职业道路上绽放光彩。

    14400

    轻量化设计在3D打印中的应用

    其中,采用3D 打印方法进行产品设计所包含的关键技术主要有:1、选用何种打印材料,采用何种打印机(打印原理),如何能够降低成本?2、如何进行产品结构设计,得到所需要的三维模型?...No.1 常用的打印材料 在 3D打印领域中,主要应用到的材料包括工程塑料、光敏树脂及类橡胶材料,现对他们的进行归纳总结,具体如下表所示: 名称 工艺 特点 PLA FDM 表面有颗粒感、成本低、多小型打印机...众所周知,3D打印机在打印金属、软胶等特殊材料的过程中具有较高的成本,成为限制该技术向消费者广泛推广的重要因素。...于此同时,3D打印与打印件的重量有直接的关系,因此,设计阶段采用轻量化结构设计,指导产品结构的选型,相关参数的选取,进而降低打印件的质量,提高打印件的性价比,对该技术的推广具有重要的意义。...例如:需要设计一款台灯支架,具体要求为:1、能够作为具有一定的刚度;2、台灯发光过程中具有部分热量辐射到支架上,使之温度升高(具有一定耐温性);3、尽可能实惠。

    1.1K20

    VBA小技巧05:将数据打印在VBE立即窗口的一行中

    这是一个很简单的技巧,但有时可能会给你的代码调试带来一些方便。...通常,在编写代码时,我们会在其中放置一些Debug.Print语句,用来在立即窗口中打印程序运行过程中的一些变量值,了解程序的运行状态。...一般情况下,Debug.Print语句每运行一次,就会将要打印的数据输出到不同的行中,如下图1所示。 ? 图1 那么,我们能不能将这些数据打印在同一行中呢?...将数据打印在同一行中,更方便查看结果,特别是有很多数据要打印时更是如此。 其实很简单,在Debug.Print语句中要打印的变量后面加上一个分号就可以了,如下图2所示。 ?...图2 可以看到,在立即窗口的同一行中输出了结果。这样,在立即窗口显示不下数据时,就不需要我们滚动向下查看数据了。对于数据不少、也不多的情况,可以试试!

    5.6K20

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    在本文中,我们介绍了最基本的 5 种数据可视化图表,在展示了它们的优劣点后,我们还提供了绘制对应图表的 Matplotlib 代码。...在这里,我们也可以用颜色将数据分组。 ? 线图示例。 以下是线图的实现代码,和散点图的代码结构很相似,只在变量设置上有少许变化。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...常规条形图 分组条形图允许我们比较多个类别变量。如下图所示,我们第一个变量会随不同的分组(G1、G2 等)而变化,我们在每一组上比较不同的性别。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。 ?

    2.4K60

    Pandas与Matplotlib:Python中的动态数据可视化

    在本文中,我们将探讨如何使用Python中的Pandas和Matplotlib库来实现动态数据可视化,并以访问京东数据为案例进行详细说明。为什么选择Pandas和Matplotlib?...例如,在金融领域,分析师需要实时监控股票价格变动;在电子商务领域,运营人员需要实时监控销售数据和用户行为。访问京东数据在本案例中,我们将模拟访问京东的数据,包括商品销量、用户评价等信息。...在这个例子中,我们将使用Pandas生成一些模拟数据。2. 使用Matplotlib创建基础图表接下来,我们使用Matplotlib创建一个基础的折线图。3....,我们可以在Python中创建动态和交互式的数据可视化图表。...这不仅提高了数据的可读性,还增强了用户的交互体验。在本案例中,我们模拟了访问京东数据的过程,并展示了如何动态地展示商品销量的变化。随着数据科学和机器学习领域的不断发展,掌握这些技能将变得越来越重要。

    23510

    5 种快速易用的 Python Matplotlib 数据可视化方法

    在本文中,我们介绍了最基本的 5 种数据可视化图表,在展示了它们的优劣点后,我们还提供了绘制对应图表的 Matplotlib 代码。...在这里,我们也可以用颜色将数据分组。 线图示例。 以下是线图的实现代码,和散点图的代码结构很相似,只在变量设置上有少许变化。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图 分组条形图允许我们比较多个类别变量。如下图所示,我们第一个变量会随不同的分组(G1、G2 等)而变化,我们在每一组上比较不同的性别。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。

    2K40

    Pandas与Matplotlib:Python中的动态数据可视化

    在本文中,我们将探讨如何使用Python中的Pandas和Matplotlib库来实现动态数据可视化,并以访问京东数据为案例进行详细说明。 为什么选择Pandas和Matplotlib?...例如,在金融领域,分析师需要实时监控股票价格变动;在电子商务领域,运营人员需要实时监控销售数据和用户行为。 访问京东数据 在本案例中,我们将模拟访问京东的数据,包括商品销量、用户评价等信息。...在这个例子中,我们将使用Pandas生成一些模拟数据。 2. 使用Matplotlib创建基础图表 接下来,我们使用Matplotlib创建一个基础的折线图。 3....,我们可以在Python中创建动态和交互式的数据可视化图表。...这不仅提高了数据的可读性,还增强了用户的交互体验。在本案例中,我们模拟了访问京东数据的过程,并展示了如何动态地展示商品销量的变化。随着数据科学和机器学习领域的不断发展,掌握这些技能将变得越来越重要。

    10910

    数据分析入门系列教程-常用图表

    今天我们来学习下数据可视化,其实在前面的章节中,我们也接触到了一些数据可视化的知识,在分析数据集的时候,有效的可视化图表,可以帮助我们更好的了解数据。...条形图 条形图可以查看数据中不同类别之间的分布请求 盒式图 是由五个数值组成:最大值(max)、最小值(min)、中位数(median)和上下四分位数(Q3,Q1),可以帮助我们分析数据的差异性、离散程度和异常值等信息...图片 在以后的工作中,如果遇到可视化工作,又不太确定如何更好的呈现数据,可以来看看上面的图片,也许能找到灵感。...两种作图整体分布式类似的,不过 Seaborn 作为 Matplotlib 的更高级 API 实现,可以更加方便的处理数据的分组展示等功能。...,它涵盖了非常强大的 API,可以对生成的图表再做后续的操作,当然 Matplotlib 是最为基础,也是最为强大的工具,在实际的工作中,需要好好衡量,选择最适合的工具来做可视化的工作。

    2K20

    数据可视化(14)-Seaborn系列 | 条形图barplot()

    条形图 条形图主要展现的是每个矩形高度的数值变量的中心趋势的估计。 注:条形图只显示平均值(或其他估计值)。...estimator:可回调函数 作用:设置每个分类箱的统计函数 ci:float或者"sd"或None 在估计值附近绘制置信区间的大小,如果是"sd", 则跳过bootstrapping并绘制观察的标准差...tips = sns.load_dataset("tips") """ 案例1: 指定x分类变量进行分组,指定 y为数据分布,绘制垂直条形图 """ sns.barplot(x="day", y="total_bill...sns.set(style="darkgrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例2: 指定hue对已分组的数据进行嵌套分组(第二次分组)并绘制条形图...,x 为数据分布 (这样的效果相当于水平条形图) """ sns.barplot(x="tip", y="day", data=tips) plt.show() [paycy2g7d9.png] import

    6.9K01

    Python 数据分析(四):Pandas 进阶

    概述 我们在上一篇文章初识 Pandas中已经对 Pandas 作了一些基本介绍,本文我们进一步来学习 Pandas 的一些使用。 2....缺失项 在现实中我们获取到的数据有时会存在缺失项问题,对于这样的数据,我们通常需要做一些基本处理,下面我们通过示例来看一下。...数据合并 Pandas 具有高性能内存中连接操作,与 SQL 相似,它提供了 merge() 函数作为 DataFrame 对象之间连接操作的入口,我们通过示例来看一下。...数据可视化 Pandas 的 Series 和 DataFrame 的绘图功能是包装了 matplotlib 库的 plot() 方法实现的,下面我们通过示例来看一下。...5.2 条形图 纵置条形图代码实现如下所示: import pandas as pd, numpy as np, matplotlib.pyplot as plt df = pd.DataFrame(

    75220

    5个快速而简单的数据可视化方法和Python代码

    在这篇博客文章中,我们将研究5种数据可视化,并使用Python的Matplotlib为它们编写一些快速简单的函数。与此同时,这里有一个很棒的图表,可以帮助你为工作选择合适的可视化工具! ?...使用箱子(离散化)真的帮助我们看到“大局”,如果我们使用没有离散箱子的所有数据点,在可视化中可能会有很多噪音,使我们很难看到真正发生了什么。 ?...我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...在' barplot() '函数中,' xdata '表示x轴上的标记,' ydata '表示y轴上的条高。误差条是以每个栏为中心的一条额外的线,用来显示标准差。 分组条形图允许我们比较多个分类变量。...我们循环遍历每一组,但是这次我们在旧的条形图上绘图,而不是在它们旁边画新条形图。 ? 常规条形图 ? 分组条形图 ?

    2.1K10

    从零开始学机器学习——准备和可视化数据

    首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns数据准备-清洗在进行机器学习的第一步——准备数据,为了方便起见,我已经提前下载好了所需的文件。...t=1726642760&download=true在大多数情况下,我们很少能够获得完全符合规范的数据集。因此,通常第一步是对数据进行清洗。...Matplotlib 来呈现我们的数据分析结果。...接下来,'Price'.mean()是对每个分组内的Price列计算平均值。这样,我们就得到了每个月的南瓜平均价格。最后,.plot(kind='bar')是将计算出的平均价格数据绘制成条形图。...然而,在文章中我还提到了一个重要的观点:这种方法并不能充分解释具体问题的原因。这是因为我们只是在理想条件下计算价格,而没有考虑到年份、天气以及称重等因素的影响。

    18730
    领券