首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在loop - simulink中更改传递函数

在Loop-Simulink中更改传递函数是指在使用Loop-Simulink进行系统建模和仿真时,需要修改系统的传递函数。传递函数是描述系统输入和输出之间关系的数学模型,通常用于控制系统设计和分析。

在Loop-Simulink中更改传递函数的步骤如下:

  1. 打开Loop-Simulink软件,并创建一个新的模型文件。
  2. 在模型文件中选择需要修改传递函数的系统组件或模块。
  3. 右键点击选中的系统组件或模块,选择“打开”或“编辑”选项。
  4. 在打开或编辑的界面中,找到传递函数的参数设置部分。
  5. 根据需要,修改传递函数的参数,例如增益、时延、阻尼比等。
  6. 保存修改后的传递函数参数,并关闭编辑界面。
  7. 在Loop-Simulink中进行系统仿真,验证修改后的传递函数对系统行为的影响。

Loop-Simulink是腾讯云推出的一款基于云计算的系统建模和仿真工具,它提供了丰富的模块和组件,可以方便地进行系统建模、仿真和分析。在Loop-Simulink中,用户可以通过图形化界面进行系统模型的搭建和参数设置,无需编写复杂的代码。同时,Loop-Simulink还提供了多种优化算法和工具,帮助用户进行系统性能优化和参数调整。

推荐的腾讯云相关产品:腾讯云云服务器(CVM)、腾讯云云数据库MySQL版、腾讯云人工智能平台(AI Lab)。

腾讯云云服务器(CVM)是一种灵活可扩展的云计算服务,提供了高性能的虚拟机实例,适用于各种计算场景。详情请参考:腾讯云云服务器

腾讯云云数据库MySQL版是一种高性能、可扩展的关系型数据库服务,适用于各种应用场景。详情请参考:腾讯云云数据库MySQL版

腾讯云人工智能平台(AI Lab)是一套集成了多种人工智能技术的开发平台,提供了丰富的工具和算法,帮助用户快速构建和部署人工智能应用。详情请参考:腾讯云人工智能平台

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 如何利用matlab做BP神经网络分析(利用matlab神经网络工具箱)[通俗易懂]

    最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进行预测,本文结合实际数据,选取了常用的BP神经网络算法,其算法原理,因网上一大堆,所以在此不必一一展示,并参考了bp神经网络进行交通预测的Matlab源代码这篇博文,运用matlab 2016a,给出了下面的代码,并最终进行了预测

    01

    bp神经网络应用实例(简述bp神经网络)

    clear; clc; TestSamNum = 20; % 学习样本数量 ForcastSamNum = 2; % 预测样本数量 HiddenUnitNum=8; % 隐含层 InDim = 3; % 输入层 OutDim = 2; % 输出层 % 原始数据 % 人数(单位:万人) sqrs = [20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ... 41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63]; % 机动车数(单位:万辆) sqjdcs = [0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6... 2.7 2.85 2.95 3.1]; % 公路面积(单位:万平方公里) sqglmj = [0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 0.56 0.59 0.59 0.67 0.69 0.79]; % 公路客运量(单位:万人) glkyl = [5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ... 22598 25107 33442 36836 40548 42927 43462]; % 公路货运量(单位:万吨) glhyl = [1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ... 13320 16762 18673 20724 20803 21804]; p = [sqrs; sqjdcs; sqglmj]; % 输入数据矩阵 t = [glkyl; glhyl]; % 目标数据矩阵 [SamIn, minp, maxp, tn, mint, maxt] = premnmx(p, t); % 原始样本对(输入和输出)初始化 SamOut = tn; % 输出样本 MaxEpochs = 50000; % 最大训练次数 lr = 0.05; % 学习率 E0 = 1e-3; % 目标误差 rng('default'); W1 = rand(HiddenUnitNum, InDim); % 初始化输入层与隐含层之间的权值 B1 = rand(HiddenUnitNum, 1); % 初始化输入层与隐含层之间的阈值 W2 = rand(OutDim, HiddenUnitNum); % 初始化输出层与隐含层之间的权值 B2 = rand(OutDim, 1); % 初始化输出层与隐含层之间的阈值 ErrHistory = zeros(MaxEpochs, 1); for i = 1 : MaxEpochs HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层网络输出 NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输出层网络输出 Error = SamOut - NetworkOut; % 实际输出与网络输出之差 SSE = sumsqr(Error); % 能量函数(误差平方和) ErrHistory(i) = SSE; if SSE < E0 break; end % 以下六行是BP网络最核心的程序 % 权值(阈值)依据能量函数负梯度下降原理所作的每一步动态调整量 Delta2 = Error; Delta1 = W2' * Delta2 .* HiddenOut .* (1 - HiddenOut); dW2 = Delta2 * HiddenOut'; dB2 = Delta2 * ones(TestSamNum, 1); dW1 = Delta1 * SamIn'; dB1 = Delta1 * ones(TestSamNum, 1); % 对输出层与隐含层之间的权值和阈值进行修正 W2 = W2 + lr*dW2; B2 = B2 + lr*dB2; % 对输入层与隐含层之间的权值和阈值进行修正 W1 = W1 + lr*dW1; B1 = B1 + lr*dB1; end HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层输出最终结果 NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输

    03

    matlab的simulink文件mdl和slx对比

    从R2012a版本及以后的所有Simulink模型都采用slx文件名作为默认格式。Simulink是MathWorks公司集成在该公司著名的技术计算分析解决方案MATLAB中的一种模仿建模解决方案。slx取代了以前的mdl格式,由于采用了zip压缩,可以实现更小的文件大小,具有更好的内化支持,并能实现增量加载。.slx文件是以slx格式保存的Simulink模型。从其内部结构来看,Simulink模型(.slx)是一个常规的ZIP档案,它包含了一个结构化的XML文件集合,主要的模型规范定义在simulink/blockdiagram.xml文件中。这种模型可以直接在MathWorks Simulink或MathWorks MATLAB中打开,也可以通过第三方工具(如Simulink Library for Java)在其他软件中导入。MathWorks MATLAB和Simulink提供了将传统MDL模型转换为SLX格式的本地工具。

    04

    【Matlab】开发环境介绍及学习方法

    MATLAB是是矩阵实验室(Matrix Laboratory)的意思,在数学和工程分析中经常要用到,实用性很强。MATLAB具有数值分析、数值和符号计算、工程与科学绘图、控制系统的设计与仿真、数字图像处理、数字信号处理、财务与金融工程等功能。尤其是在控制系统的设计和仿真方面,甚至催生出一个单独的Simulink设计模块。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案(主要是它的指令表达式与数学、工程中常用的形式十分相似),并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式(但有少量学校好像还在学Fortran,可能是更需要效率还是什么),代表了当今国际科学计算软件的先进水平(当前数学类软件主要分为数值计算型和符号计算型/数学分析型,前者MATLAB是绝对主力,后者还有Mathematica,Maple等)。在高校,MATLAB已经成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具。

    01
    领券