首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在geopandas中融合后删除多边形的内线

是指在地理信息系统(GIS)中使用geopandas库进行多边形处理的一个操作。

具体步骤如下:

  1. 导入geopandas库和相关依赖:
代码语言:txt
复制
import geopandas as gpd
from shapely.geometry import Polygon
  1. 创建多边形对象:
代码语言:txt
复制
polygon1 = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
polygon2 = Polygon([(0.5, 0.5), (0.5, 1.5), (1.5, 1.5), (1.5, 0.5)])
  1. 创建geopandas的GeoDataFrame对象:
代码语言:txt
复制
gdf = gpd.GeoDataFrame({'geometry': [polygon1, polygon2]})
  1. 执行融合操作:
代码语言:txt
复制
merged = gdf.unary_union
  1. 删除多边形内部的线:
代码语言:txt
复制
result = [geom for geom in merged.geoms if not any(geom.within(x) for x in merged.geoms)]

最终的result列表将包含去除多边形内部线的多边形对象。

geopandas是一个基于pandas和shapely的Python库,用于处理地理空间数据。它提供了灵活而强大的工具,可以进行地理数据的读取、分析和可视化等操作。腾讯云提供了云原生数据库TDSQL和对象存储COS等产品,可用于存储和处理地理空间数据。

关于geopandas的更多信息,请参考腾讯云的产品介绍链接: 腾讯云GeoServer产品介绍 腾讯云地理大数据产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

(数据科学学习手札74)基于geopandas的空间数据分析——数据结构篇

geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库,其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis、PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁,打造纯Python式的空间数据处理工作流。本系列文章就将围绕geopandas及其使用过程中涉及到的其他包进行系统性的介绍说明,每一篇将尽可能全面具体地介绍geopandas对应方面的知识,计划涵盖geopandas的数据结构、投影坐标系管理、文件IO、基础地图制作、集合操作、空间连接与聚合。   作为基于geopandas的空间数据分析系列文章的第一篇,通过本文你将会学习到geopandas中的数据结构。 geopandas的安装和使用需要若干依赖包,如果不事先妥善安装好这些依赖包而直接使用pip install geopandas或conda install geopandas可能会引发依赖包相关错误导致安装失败,官方文档中的推荐安装方式为:

02
  • python与地理空间分析(一)

    在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:

    05

    开源 | CVPR2020 使用二叉空间分割生成3D 网格模型

    多边形网格普遍存在数字三维领域中,但在深度学习革命中却只发挥了很小的作用。当前领先的生成模型方法通过隐函数实现,并且需要在生成昂贵的iso-surface后,才能生成网格。为了克服这些挑战,受到计算机图形学中的经典空间数据结构——二进制空间划分(BSP)的启发,来改善3D学习模型。BSP的核心是通过空间的递归细分得到凸集的运算。基于这一特性,本文设计了一种通过凸多边形分解来学习表示三维形状的网络BSP-Net。重要的是,BSP-Net是通过非凸多边形分解新型无监督的训练的。该网络使用一组由BSPtree从平面生成的凸集,来进行训练并重建模型形状。无需进行等值曲面处理,BSPNet推导出的凸多边形可以很容易地提取出来,形成一个多边形网格。生成的网格是紧凑的,非常适合表示尖锐的几何形状;生成的网格是严密的,并且可以很容易地参数化。结果表明,使用更少的图元,BSP-Net的重建质量与目前最先进的方法相比具有竞争力的。

    01
    领券