首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。 合并DF Pandas 使用 .merge() 方法来执行合并。...Same_day 40 x3 Adams Technology Standard Class 50 连接DF Pandas 中concat() 方法在可以在垂直方向...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...我对固定数量的行重复了十次实验,以消除任何随机性。下面是这十次试验中合并操作的平均运行时间。 上图描绘了操作所花费的时间(以毫秒为单位)。...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。

2K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

    来源:Deephub Imba本文约1400字,建议阅读15分钟在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。...合并DF Pandas 使用 .merge() 方法来执行合并。...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...我对固定数量的行重复了十次实验,以消除任何随机性。下面是这十次试验中合并操作的平均运行时间。 上图描绘了操作所花费的时间(以毫秒为单位)。...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。 编辑:王菁 校对:林亦霖

    1.4K10

    Python数据容器:集合

    前言在 Python 中,数据容器是组织和管理数据的重要工具,集合作为其中一种基本的数据结构,具有独特的特性和广泛的应用。本章详细介绍了集合的定义、常用操作以及遍历方法。...(增加或删除元素等)数据是无序存储的(不支持下标索引)不允许重复数据存在支持for循坏,不支持while循坏# 定义集合my_set={"A","B","C","B","A"}# 定义一个空集合my_set_empty...:对比集合1和集合2,在集合1内删除和集合2相同的元素,集合1被修改,集合2不变。...', 'best',请按如下要求操作:1.定义一个空集合2.通过for循环遍历列表3.在for循环中将列表的元素添加至集合4.最终得到元素去重后的集合对象,并打印输出my_list = ['新闻', '...in my_list: # 在for循坏中将列表元素添加至集合 my_set.add(element)print(f"列表的内容为{my_list}")print(f"通过for循坏得到的集合为

    9331

    当一个数据帧在经过Access、trunk链路的时候分别经历了什么样的过程?

    了解数据经过的整个过程(需要用心看) 这一篇来详细了解下整个数据在该网络中是如何传递的,对于我们深入了解access以及Trunk的处理过程是非常有帮助的。...规则细节部分 怎么理解接收不带Tag的报文处理以及发送帧处理过程 之前一直在讲解有Tag的数据是如何通过Trunk的,其实Trunk也能够实现access的功能的,只是看起来不容易被理解,不如access...当发出去的时候,如果该数据带有Tag,与PVID相同,且在允许列表里面,会执行一个动作,剥离Tag发送出去。...(1)在一个VLAN交换网络中,以太网帧有两种形式出现: 无标记帧(Untagged帧):简称untag,原始、没有打上4字节VLAN的标签的帧。...Tag帧以及untag帧 (3)access模式下,一个接口只能加入一个VLAN,适合对接处理不了Tag帧的设备,这样在进入的时候打上对应的Tag,出来的时候,剥离Tag交给终端设备,既可以完成通信,又实现了

    64010

    【MySQL】一文带你搞懂MySQL中的各种锁

    那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就 保证了数据的一致性和完整性。...应用 在InnoDB存储引擎中。 InnoDB 的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加 的锁。...演示 默认情况下, InnoDB 在 REPEATABLE READ 事务隔离级别运行, InnoDB 使用 next-key 锁进行搜 索和索引扫描,以防止幻读。...4.3间隙锁&临键锁 默认情况下, InnoDB 在 REPEATABLE READ 事务隔离级别运行, InnoDB 使用 next-key 锁进行搜 索和索引扫描,以防止幻读。...并不是,因为是非唯一索 引,这个结构中可能有多个18 的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值 (当前案例中也就是29 )。

    1.7K70

    VLookup及Power Query合并查询等方法在大量多列数据匹配时的效率对比及改善思路

    VLookup无疑是Excel中进行数据匹配查询用得最广泛的函数,但是,随着企业数据量的不断增加,分析需求越来越复杂,越来越多的朋友明显感觉到VLookup函数在进行批量性的数据匹配过程中出现的卡顿问题也越来越严重...: 4、Power Query合并查询,按常规表间合并操作如下图所示: 五、4种方法数据匹配查找方法用时对比 经过分别对以上4中方法单独执行多列同时填充(Power Query数据合并法单独执行数据刷新...在思考这些问题的时候,我突然想到,Power Query进行合并查询的步骤,其实是分两步的: 第一步:先进行数据的匹配 第二步:按需要进行数据的展开 也就是说,只需要匹配查找一次,其它需要展开的数据都跟着这一次的匹配而直接得到...那么,如果我们在公式中也可以做到只匹配一次,后面所需要取的数据都跟着这次匹配的结果而直接得到,那么,效率是否会大有改善呢?...七、结论 在批量性匹配查找多列数据的情况下,通过对Index和Match函数的分解使用,先单独获取所需要匹配数据的位置信息,然后再根据位置信息提取所需多列的数据,效率明显提升,所需匹配提取的列数越多,

    4.9K20

    ​架构学习:7种负载均衡算法策略

    负载均衡是什么就不具体介绍了,四层负载均衡的工作模式包括:数据链路层负载均衡、网络层负载均衡、应用层负载均衡1.数据链路层负载均衡数据链路层传输的是以太网帧,负载均衡器修改帧的MAC目标地址,转发到对应服务器的网卡上...流程如下:2.网络层负载均衡一个 IP 协议数据包由 Headers 和 Payload 两部分组成,在 IP 分组数据包的 Headers 带有源和目标的 IP 地址即可。...源和目标 IP 地址代表了“数据是从分组交换网络中的哪台机器发送到哪台机器的”,所以可以通过改变这里面的 IP 地址,来实现数据包的转发,流程如下:3.应用层负载均衡策略3.1轮循均衡(Round Robin...3.4权重随机均衡 Weighted Random这种均衡算法类似于权重轮循算法,不过在处理请求分担的时候,它是个随机选择的过程3.5一致性哈希均衡Consistency Hash根据请求中的某些数据(...3.7 最少连接数均衡 Least Connection客户端的每一次请求服务,在服务器停留的时间可能会有比较大的差异。

    20210

    C语言中循环语句总结

    while循坏:  for循环:  while和for循环的对比: 区别:for 和 while 在实现循环的过程中都有初始化、判断、调整这三个部分,但是 for 循环的三个部 分⾮常集中,便于代码的维护...break和continue在循环语句中的作用 break:永久的终⽌循环....环中 continue 后的代码,直接去到循环的调整部分。...,来到了i++的调整部分 printf("%d ", i); } return 0; } 运行结果: 对比for循环和while循环中continue对代码的运行影响: 分析代码可以知道它们修改条件的位置不同...对于while循环的修改条件在continue后面所以当i=5时,他没法继续修改,而是陷入i=5的死循环  对于for循环的修改条件在continue上面,所以当i=5时,它会跳出printf函数来到上面进行条件修改

    13310

    SQL锁总结

    在InnoDB引擎中,我们可以在备份时加上参数-single-transaction参数来完成不加锁的一致性数据备份。...MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与DDL冲突,保证读写的正确性。...锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在InnoDB存储引擎中。 InoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。...1.索引上的等值查询(唯一索引),给不存在的记录加锁时,优化为间隙锁。 2.索引上的等值查询(普通索引),向右遍历时最后一个值不满足查询需求时,neXt-key lock退化为间隙锁。...3.索引上的范围查询(唯一索)-会访问到不满足条件的第一个值为止。 注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用间隙锁。

    20130

    常见负载均衡策略「建议收藏」

    负载均衡构建在原有网络结构之上,它提供了一种透明且廉价有效的方法扩展服务器和网络设备的带宽、加强网络数据处理能力、增加吞吐量、提高网络的可用性和灵活性。...基于这个前提,轮循调度是一个简单而有效的分配请求的方式。然而对于服务器不同的情况,选择这种方式就意味着能力比较弱的服务器也会在下一轮循环中接受轮循,即使这个服务器已经不能再处理当前这个请求了。...加权轮循 Weighted Round Robin: 这种算法解决了简单轮循调度算法的缺点:传入的请求按顺序被分配到集群中服务器,但是会考虑提前为每台服务器分配的权重。...这意味着在服务器 B 接收到第一个请求之前,服务器 A 会连续的接收到 2 个请求,以此类推。...和加权轮循调度方法一样,不正确的分配可以被记录下来使得可以有效地为不同服务器分配不同的权重。

    6.9K30

    Python在Finance上的应用7 :将获取的S&P 500的成分股股票数据合并为一个dataframe

    欢迎来到Python for Finance教程系列的第7讲。 在之前的教程中,我们为标准普尔500强公司抓取了雅虎财经数据。 在本教程中,我们将把这些数据放在一个DataFrame中。...尽管掌握了所有数据,但我们可能想要一起处理数据。 为此,我们将把所有的股票数据集合在一起。 目前的每个股票文件都有:开盘价,最高价,最低价,收盘价,成交量和调整收盘价。...至少现在大多只对调整后的收盘价感兴趣。 ? 首先,我们拉取我们之前制作的代码列表,并从一个名为main_df的空数据框开始。 现在,我们准备阅读每个股票的数据框: ?...你不需要在这里使用Python的enumerate,这里使用它可以了解我们读取所有数据的过程。 你可以迭代代码。 从这一点,我们可以生成有趣数据的额外列,如: ? 但现在,我们不必因此而烦恼。...我们开始构建共享数据框: ? 如果main_df中没有任何内容,那么我们将从当前的df开始,否则我们将使用Pandas' join。 在这个for循环中,我们将再添加两行: ? ?

    1.3K30

    【Java】循环语句for、while、do-while

    ,从而结束循 环,否则循环将一直执行下去,形成死循环。...③具体执行的语句 ④循环后,循环变量的变化情况 输出10次HelloWorld do...while 循环的特点:无条件执行一次循环体,即使我们将循环条件直接写成 false ,也依然会循...1.6 跳出语句 break 使用场景:终止 switch 或者循环 在选择结构 switch 语句中 在循环语句中 离开使用场景的存在是没有意义的 continue 使用场景...扩展知识点 2.1 死循环 死循环: 也就是循环中的条件永远为 true ,死循环的是永不结束的循环。例如: while(true){} 。...在后期的开发中,会出现使用死循环的场景,例如:我们需要读取用户输入的输入,但是用户输入 多少数据我们并 不清楚,也只能使用死循环,当用户不想输入数据了,就可以结束循环了,如何去结束一个死循环

    6.8K10

    负载均衡调度算法大全

    基于这个前提,轮循调度是一个简单而有效的分配请求的方式。然而对于服务器不同的情况,选择这种方式就意味着能力比较弱的服务器也会在下一轮循环中接受轮循,即使这个服务器已经不能再处理当前这个请求了。...image 加权轮循(Weighted Round Robin) 这种算法解决了简单轮循调度算法的缺点:传入的请求按顺序被分配到集群中服务器,但是会考虑提前为每台服务器分配的权重。...这意味着在服务器B接收到第一个请求之前前,服务器A会连续的接受到2个请求,以此类推。...这种方式中每个真实服务器的权重需要基于服务器优先级来配置。 加权响应(Weighted Response) 流量的调度是通过加权轮循方式。加权轮循中所使用的权重是根据服务器有效性检测的响应时间来计算。...所有服务器在虚拟服务上的响应时间的总和加在一起,通过这个值来计算单个服务物理服务器的权重;这个权重值大约每15秒计算一次。

    6.3K30

    异步,同步,阻塞,非阻塞程序的实现

    如果是同步,线程会等待接受函数的返回值(或者轮循函数结果,直到查出它的返回状态和返回值)。如果是异步,线程不需要做任何处理,在函数执行完毕后会推送通知或者调用回调函数。...线程在同步调用下,也能非阻塞(同步轮循非阻塞函数的状态),在异步下,也能阻塞(调用一个阻塞函数,然后在函数中调用回调,虽然没有什么意义)。 下面,我会慢慢实现一个异步非阻塞的sleep。...在web项目中,这是很可怕的。所以我们需要引入非阻塞。非阻塞就是为了让一个响应的操作,不影响另一个响应。否则,当A用户在访问某个耗时巨大的网页时,B用户只能对着白板发呆。...那么,我们该如何实现自己的非阻塞sleep呢。 (tornado的sleep,原理十分复杂。以后再细说。) 场景二:轮循非阻塞 实现非阻塞场景,关键在于函数不能阻塞住当前线程。...上面的代码中,在一个while循环中轮循timer的状态。由于timer存在于wait中。所以需要把timer“提取”出来。

    7.6K10

    精品课 - Python 数据分析

    DataFrame 数据帧可以看成是 数据帧 = 二维数组 + 行索引 + 列索引 在 Pandas 里出戏的就是行索引和列索引,它们 可基于位置 (at, loc),可基于标签 (iat...) 数据存载 (存为了下次载,载的是上回存) 数据获取 (基于位置、基于标签、层级获取) 数据结合 (按键合并、按轴结合) 数据重塑 (行列互转、长宽互转) 数据分析 (split-apply-combine...---- HOW WELL 比如在讲拆分-应用-结合 (split-apply-combine) 时,我会先从数据帧上的 sum() 或 mean() 函数引出无条件聚合,但通常希望有条件地在某些标签或索引上进行聚合...这波操作称被 Hadley Wickham 称之为拆分-应用-结合,具体而言,该过程有三步: 在 split 步骤:将数据帧按照指定的“键”分组 在 apply 步骤:在各组上平行执行四类操作: 整合型...agg() 函数 转换型 transform() 函数 筛选型 filter() 函数 通用型 apply() 函数 在 combine 步骤:操作之后的每个数据帧自动合并成一个总体数据帧 一图胜千言

    3.3K40

    Pandas数据合并与拼接的5种方法

    pandas数据处理功能强大,可以方便的实现数据的合并与拼接,具体是如何实现的呢?...; sort:默认为True,将合并的数据进行排序,设置为False可以提高性能; suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(...'_x', '_y'); copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能; indicator:显示合并数据中数据的来源情况 举例: ?...三、DataFrame.join:主要用于索引上的合并 语法: join(self, other, on=None, how='left', lsuffix='', rsuffix='',sort=False...该方法最为简单,主要用于索引上的合并。 举例: ? ? 使用join,默认使用索引进行关联 ? 使用merge,指定使用索引进行关联,代码更复杂 ? 使用concat,默认索引全部保留 ?

    29.1K32

    三种图像插值方式对比

    在播放视频时,常遇到视频尺寸与画布尺寸不一致的情况。为了让视频按比例填充画布,需要对视频中的每一帧图像做缩放处理。 缩放就是在原图的基础上做插值计算,从而增加或减少像素点的数量。...线性插值 兰索斯插值(lanczos) 一维的线性插值,是在目标点的左边和右边各取一个点做插值,这两个点的权重是由线性函数计算得到。...而一维的兰索斯插值是在目标点的左边和右边各取四个点做插值,这八个点的权重是由高阶函数计算得到。...我参考OpenCV中的实现方式,实现了一份GPU上的兰索斯插值算法,该算法在GPU上运行,并不额外消耗CPU资源。...占用GPU时间如下所示: 插值方式 最近点插值 线性插值 兰索斯插值 每帧图像平均占用的GPU时间(ms) 6 6 12 兰索斯插值算法占用GPU的平均时间为12ms,是其它两种算法的两倍,由于该算法中

    2.3K10

    TensorFlow 分布式之论文篇 Implementation of Control Flow in TensorFlow

    对于每个 while 循环,TensorFlow 运行时会设置一个执行帧,并在执行帧内运行 while 循环的所有操作。执行帧可以嵌套。嵌套的 while 循环在嵌套的执行帧中运行。...只要执行帧之间没有数据依赖关系,则来自不同执行帧的操作可以并行运行。 Switch:Switch 运算符会根据输入控制张量 p 的布尔值,将输入张量 d 转发到两个输入中的一个。...这样就可以并行执行跨循环和循环内跨迭代的操作。我们省略了在 while 循环中如何处理常量的方法。如果你想了解其细节,请看具体代码。...下面显示了当一个 while 循环被划分到多个设备上时,数据流图是什么样子的。一个控制循环被添加到每个分区中,并控制 while 循环中的 Recvs。重写后的图在语义上与原始图是等价的。...图 14 计算逻辑 为了在反向传播循环中重用前向传播计算出来的数值,我们在构建反向传播 while 循环的过程中,自动检测反向传播中需要的前向值。

    10.6K10
    领券