首页
学习
活动
专区
圈层
工具
发布

使用 Pandas 在 Python 中绘制数据

在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。 除此之外,它还包含一个非常好的绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...我们使用的数据是 1966 年至 2020 年的英国大选结果: image.png 自行绘制的数据 在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括: 运行最新版本的 Python...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。

10K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas库在Anaconda中的安装方法

    本文介绍在Anaconda环境中,安装Python语言pandas模块的方法。 pandas模块是一个流行的开源数据分析和数据处理库,专门用于处理和分析结构化数据。...数据读写方面,pandas模块支持从各种数据源读取数据,包括CSV、Excel、SQL数据库、JSON、HTML网页等;其还可以将数据写入这些不同的格式中,方便数据的导入和导出。   ...时间序列分析方面,pandas模块在处理时间序列数据方面也非常强大。其提供了日期和时间的处理功能,可以对时间序列数据进行重采样、滚动窗口计算、时序数据对齐等操作。   ...在之前的文章中,我们也多次介绍了Python语言pandas库的使用;而这篇文章,就介绍一下在Anaconda环境下,配置这一库的方法。   ...在这里,由于我是希望在一个名称为py38的Python虚拟环境中配置pandas库,因此首先通过如下的代码进入这一环境;关于虚拟环境的创建与进入,大家可以参考文章Anaconda创建、使用、删除Python

    2K10

    在React Native中优雅的使用iconfont

    React Native中的iconfont 关于在React Native中使用iconfont,网上已有很多非常好的解决方案,用的最多的就是react-native-vector-icons , 这个库支持很多常用的...IconFont的使用原理 其实IconFont就是一些文字,通过在web上的使用,我们可以大概猜出使用方法: 指定字体集 把对应的16进制码当成文字写到文本中 在React Native中同样如此,我们可以通过...实际上,一个字体通常由数个表(table)构成,字体的信息存储在表中。...这里最好给每个icon定一个易于理解的名字,可以使用http://font.baidu.com/editor 使用自定义的IconFont 有了上面的摸索,要支持自己的IconFont并不难。...tag-svip:{icon('tag-svip')} ) } } 另外,在工程中

    17.7K40

    数据分析实际案例之:pandas在餐厅评分数据中的使用

    简介 为了更好的熟练掌握pandas在实际数据分析中的应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据的分析。...餐厅评分数据简介 数据的来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是: userID: 用户ID placeID:餐厅ID rating:总体评分 food_rating...:食物评分 service_rating:服务评分 我们使用pandas来读取数据: import numpy as np path = '.....如果我们关注的是不同餐厅的总评分和食物评分,我们可以先看下这些餐厅评分的平均数,这里我们使用pivot_table方法: mean_ratings = df.pivot_table(values=['...132583 4 132584 6 132594 5 132608 6 132609 5 132613 6 dtype: int64 如果投票人数太少,那么这些数据其实是不客观的

    2.1K20

    在 JavaScript 中优雅的提取循环内的数据

    翻译:疯狂的技术宅 http://2ality.com/2018/04/extracting-loops.html 在本文中,我们将介绍两种提取循环内数据的方法:内部迭代和外部迭代。...它是 for-of 循环和递归的组合(递归调用在 B 行)。 如果你发现循环内的某些数据(迭代文件)有用,但又不想记录它,那应该怎么办?...内部迭代 提取循环内数据的第一个方法是内部迭代: 1const fs = require('fs'); 2const path = require('path'); 3 4function logFiles...请注意,在生成器中,必须通过 yield* 进行递归调用(第A行):如果只调用 logFiles() 那么它会返回一个iterable。...但我们想要的是在该 iterable 中 yield 每个项目。这就是 yield* 的作用。

    5.2K20

    数据分析实际案例之:pandas在泰坦尼特号乘客数据中的使用

    事故已经发生了,但是我们可以从泰坦尼克号中的历史数据中发现一些数据规律吗?今天本文将会带领大家灵活的使用pandas来进行数据分析。...接下来我们来看一下怎么使用pandas来对其进行数据分析。...使用pandas对数据进行分析 引入依赖包 本文主要使用pandas和matplotlib,所以需要首先进行下面的通用设置: from numpy.random import randn import...pandas提供了一个read_csv方法可以很方便的读取一个csv数据,并将其转换为DataFrame: path = '.....: df['Age'].mean() 30.272590361445783 实际上有些数据是没有年龄的,我们可以使用平均数对其填充: clean_age1 = df['Age'].fillna(df['

    1.9K30

    探索Pandas库在Excel数据处理中的应用

    探索Pandas库在Excel数据处理中的应用 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。今天,我们将通过一个简单的示例来探索如何使用Pandas来处理Excel文件。...) 查看Sheet列表 Excel文件可能包含多个Sheet,我们可以使用以下代码来查看所有的Sheet名称: # 查看sheet列表 print(pd.ExcelFile('data.xlsx').sheet_names...sheet_name='Sheet1') 查看数据 Pandas提供了多种方法来查看数据的不同部分: # 查看全部行 print(df) # 查看前1行 print(df.head(1)) # 查看最后...我们可以看到Pandas在处理Excel数据时的强大功能。...无论是数据的读取、修改、筛选还是保存,Pandas都提供了简洁而高效的方法。希望这个示例能帮助你更好地利用Pandas来处理你的数据。

    98300

    在Pandas中通过时间频率来汇总数据的三种常用方法

    比如进行数据分析时,我们需要将日数据转换为月数据,年数据等。在Pandas中,有几种基于日期对数据进行分组的方法。...例如将每日数据重新采样为每月数据。Pandas中的resample方法可用于基于时间间隔对数据进行分组。...Pandas 中的 Grouper 函数提供了一种按不同时间间隔(例如分钟、小时、天、周、月、季度或年)对时间序列数据进行分组的便捷方法。...通过与Pandas 中的 groupby 方法 一起使用,可以根据不同的时间间隔对时间序列数据进行分组和汇总。Grouper函数接受以下参数:key: 时间序列数据的列名。...在Pandas中,使用dt访问器从DataFrame中的date和time对象中提取属性,然后使用groupby方法将数据分组为间隔。

    1.5K10

    使用SSH连接远程主机并执行多个Bash命令最优雅的方法是什么

    问题 我已经设置好了ssh代理,我可以用Bash脚本在外部服务器上运行命令,执行以下操作: ssh blah_server "ls; pwd;" 现在,我真正想做的是在外部服务器上运行许多长命令。...将所有这些命令都放在引号之间看起来会很不美观,而且我确实不想为了避开这个问题而多次使用SSH连接。 那么,有没有一种方法可以让我一次性完成这个操作,比如用括号或其他方式来包含所有的命令?...我在寻找类似这样的方法: ssh blah_server ( ls some_folder; ....回答 使用 Here-Document: ssh user@remote_host << EOF 命令1 命令2 命令3 EOF 不过这样执行会有一个问题: 输出信息的开头都有一句提示 "Pseudo-terminal...如果要避免这个提示信息,可以将上述命令的第一行改为 ssh user@remote_host /usr/bin/bash << EOF 朋友们可以拿手上的测试环境试一试。

    65110

    使用 Pandas resample填补时间序列数据中的空白

    在现实世界中时间序列数据并不总是完全干净的。有些时间点可能会因缺失值产生数据的空白间隙。机器学习模型是不可能处理这些缺失数据的,所以在我们要在数据分析和清理过程中进行缺失值的填充。...本文介绍了如何使用pandas的重采样函数来识别和填补这些空白。 原始数据 出于演示的目的,我模拟了一些每天的时间序列数据(总共10天的范围),并且设置了一些空白间隙。...初始数据如下: 重采样函数 在pandas中一个强大的时间序列函数是resample函数。这允许我们指定重新采样时间序列的规则。...如果我们在同一粒上调用重采样的话对于识别和填补时间序列数据的空白是非常有用的。例如,我们正在使用的原始数据集并不是每天都有数值。利用下面的重样函数将这些间隙识别为NA值。...使用重采样函数是一种用来识别和填充缺失的数据点简单且有效的方法。这可以用于在构建机器学习模型之前准备和清理数据。 作者:Barrett Studdard

    5.2K20

    Pandas在爬虫中的应用:快速清洗和存储表格数据

    关键数据分析在本案例中,我们将以 贝壳网(www.ke.com) 上的上海二手房信息为例,演示如何使用 Pandas 进行数据清洗和存储。目标是获取楼盘名称、价格等信息,并进行房价分析。1....数据解析贝壳网的二手房信息通常以表格形式呈现。我们可以使用 Pandas 的 read_html 函数直接读取网页中的表格数据。需要注意的是,read_html 需要安装 lxml 库。...数据清洗:去除重复值、处理缺失值、转换数据类型等。数据存储:将清洗后的数据存储为 Excel 文件。每个步骤的代码都在前面的示例中有所体现。创意点:技术关系图谱在爬虫项目中,涉及多个技术组件和库。...总结结合 Pandas 和爬虫技术,可以高效地获取、清洗和存储网页中的表格数据。通过合理设置爬虫代理、User-Agent 和 Cookie,可以有效应对反爬虫机制。...数据清洗是数据分析中至关重要的一步,Pandas 提供了丰富的功能来处理各种数据清洗任务。

    1.1K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    10.1K30

    如何优雅的使用 IPtables 在多租户环境中实现 TCP 限速

    为了方便用户,在开发的时候不必在自己的开发环境中跑一个 SideCar,我用 socat 在一台开发环境的机器上 map UDS 到一个端口。...这样用户在开发的时候就可以直接通过这个 TCP 端口测试服务,而不用自己开一个 SideCar 使用 UDS 了。 因为所有人都要用这一个地址做开发,所以就有互相影响的问题。...我在使用说明文档里用红色大字写了这是开发测试用的,不能压测,还是有一些视力不好的同事会强行压测。隔三差五我就得去解释一番,礼貌地请同事不要再这样做了。 最近实在累了。...方法是在 Per-IP rate limiting with iptables[1] 学习到的,这个公司是提供一个多租户的 SaaS 服务,也有类似的问题:有一些非正常用户 abuse 他们的服务,由于...Chain 加入到 INPUT 中,对此端口的流量进行限制。

    3K20

    【马哥原创】python中pandas库常用的数据清洗方法

    今天特意总结出,用pandas进行数据清洗的以下几种常用方法,主要包括处理缺失值、重复数据、异常值、数据类型转换、格式统一等方面,供小伙伴们参考。...数据清洗的源代码如下:# 读取数据df = pd.read_csv('胡润百富榜_待清洗.csv')# 去除全名_中文列中名字含有的空格df['全名_中文'] = df['全名_中文'].str.replace...-照片列df = df.drop(columns='照片')# 将排名变化列中的特殊值替换为 0df['排名变化'] = df['排名变化'].replace('New', '0')# 将财富值变化列中的特殊值替换为...三、结语以上就是我分享的数据清洗实战代码了,后续的pandas数据分析及可视化部分,也可以参考我的往期原创:【爬虫+情感判定+饼图+Top10高频词+词云图】"王心凌"热门弹幕python舆情分析 |...2023.10发布【爬虫+数据清洗+可视化分析】舆情分析"淄博烧烤"的B站评论【Pandas vs SQL】数据分析代码逐行比对,孰优孰劣?

    32510

    Hanlp在ubuntu中的使用方法介绍

    HanLP的一个很大的好处是离线开源工具包,换而言之,它不仅提供免费的代码免费下载,而且将辛苦收集的词典也对外公开啦,此诚乃一大无私之举.我在安装的时候,主要参照这份博客: blog.csdn.net...id=50938796 不过该博客主要介绍的是windows如何使用hanlp,而ubuntu是linux的,所以会有所区别.下面我主要介绍的是在unbuntu的安装使用....安装eclipse 在终端输入 sudo get-apt install eclipse-platform实现一键安装,然后在应用程序找到eclipse 图1.jpg 下载hanlp  访问hanlp...(配置文件),而后面是说明文档,可以不下载 图2.jpg  在下载的data.zip的时候,下载链接有点隐晦,点击蓝色的data-for-1.2.11.zip,就会出现百度云链接啦 图3.jpg...将hanlp.propertie复制至项目的bin目录中,修改词典的路径 将root的路径修改至data保存的路径(记得data要解压) 图4.jpg 编程代码示范 图5.JPG 运行结果

    1.9K20
    领券