首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在背包问题中多次选择相同的项目[纸浆]

在背包问题中多次选择相同的项目"纸浆",是指在一个给定容量的背包中,可以重复多次选择并放入"纸浆"这个项目。

背包问题是一个经典的组合优化问题,它通常描述为:给定一个固定容量的背包和一组具有各自重量和价值的物品,我们的目标是在不超过背包容量的前提下,选择物品放入背包,使得背包内物品的总价值最大化。

在标准的背包问题中,每个项目只能选择一次,即为0-1背包问题。但在某些特定情况下,我们允许重复选择某个项目,即为多重背包问题。而背包问题中多次选择相同的项目则是多重背包问题的一种特例。

在实际应用中,多次选择相同的项目可以有一些实际的优势和应用场景。例如,在物流领域中,"纸浆"可能是一个必需的项目,供应链上的多个环节都需要用到。通过允许多次选择相同的"纸浆"项目,可以更好地满足各个环节对"纸浆"的需求,提高物流的效率和灵活性。

对于多次选择相同的项目,推荐腾讯云的相关产品是云服务器(CVM)和对象存储(COS)。

  1. 腾讯云云服务器(CVM):腾讯云云服务器是一种按需分配的虚拟服务器,可根据实际需求灵活配置和管理资源。通过使用云服务器,可以快速部署和扩展应用程序,提供强大的计算能力来处理背包问题中的多次选择相同的项目。

产品介绍链接地址:腾讯云云服务器(CVM)

  1. 腾讯云对象存储(COS):腾讯云对象存储是一种高可靠、低成本、易扩展的云端存储服务。它提供了海量的存储空间,适用于存储和管理背包问题中多次选择相同的项目的数据,如"纸浆"相关的文件、图片、视频等。

产品介绍链接地址:腾讯云对象存储(COS)

通过使用腾讯云的云服务器和对象存储服务,可以为背包问题中多次选择相同的项目提供可靠的计算和存储资源,满足实际应用的需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

什么样问题应该使用动态规划?

动态规划背包问题(0/1背包问题):案例说明: 0/1背包题中,对于每个物品,我们可以选择将其放入背包或者不放。如果选择放入背包方案是最优,那么问题具有最优子结构。...重叠子问题: 计算每个子问题时,很可能会多次计算相同容量和相同选择最优解。解决方法: 使用记忆化存储中间结果,将已经计算过子问题最优解存储起来,避免对相同子问题重复计算。...最长公共子序列问题:问题描述: 给定两个序列,找到它们最长公共子序列长度。重叠子问题: 计算两个序列最长公共子序列时,很可能会多次计算相同位置子序列长度。...解决方法: 使用动态规划时,可以通过存储已计算子序列长度来避免对相同子序列重复计算。 这些例子中,重叠子问题表现为问题解决过程中,同样子问题被多次计算。...动态规划背包问题(0/1背包问题):无后效性: 0/1背包题中选择是否将某个物品放入背包是一个局部决策。这个决策不会影响后续物品选择,只与当前物品状态和背包状态有关。

47111

今天老夫就把完全背包底裤给你扒出来瞅瞅!!!

第i件物品重量是weight[i],得到价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。...背包能背物品最大价值是多少? 01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!...[i]); } } 至于为什么,我01背包题中也做了讲解。...这里需要注意j起点,考虑放入当前物品前提是当前物品大小没有超过当前背包容量大小,对于那些容量小于当前物品大小状态来说,就维持旧状态即可,等于不选择当前物品 dp状态图如下: 完全背包先介绍到这...如果装满背包有几种方式的话?那么两个for循环先后顺序就有很大区别了,而leetcode上题目都是这种稍有变化类型。

46830
  • 额,没想到,背包问题解题也有套路。。。

    还有一类背包问题,物品可以被选多次或者 0 次,这类问题我们称为 完全背包问题,这类背包问题和 01 背包问题很类似,略微不同在于,完全背包题中,状态 dp[i][j] 依赖是 dp[i - 1...题目分析 题目给定一个数组和一个整数,数组里面的值表示是每个硬币价值,整数表示是一个价值,最少选择多少个硬币能够组成这个价值,硬币可以重复选择。...在这里,你可以形象地认为每个物品价值是 1,最后我们要求是填满背包最小价值,因为这里物品是可以重复选择多次,因此可以归类于 完全背包问题,套用之前解法就可以解题,唯一要注意一点是,这里我们不在求最大价值...,这里需要求是 “有多少种组合方式能够填满背包”,我们还是可以套用 完全背包 解法,只是最后求解东西变了,那我们动态规划状态数组中记录东西相应改变即可,在这道题中,状态数组中记录组合成该价值方案个数即可...注:一种组合方式中,一个元素不能够被重复选择 题目分析 我们之前讲过 Two Sum,也提到过 3 Sum,还有 4 Sum,那这道题是否可以套用之前解法呢?

    96521

    初识背包问题之 「 0-1 背包

    背包问题属于特殊一类动归问题,也就是按值动归,这篇文章主要讲解 0-1 背包 问题,如果读者能看明白,那么弄懂后续 完全背包 以及 多重背包 这两个知识点问题也是不大。...0-1 背包题中,物品个数有且仅有一个; 完全背包题中物品个数是无限; 多重背包题中针对不同物品,个数不一样。...通常题目会要你求出背包能装最大价值(每个物品都会有容量和价值),当然也会有不一样法,类似背包能否被装满,还有背包能装最大容量是多少,多少种方式填满背包。...,也就是 dp[i - 1][j] dp[i][j] = dp[i - 1][j]; // 如果选择物品 i 使得当前价值相对不选更大,那就选取 i,更新当前最大价值...基本概况就是这些,当然可能问题法会不一样,例如: 背包能不能被装满 解题思路就是将 int 数组换成 boolean 数组,也不用去考虑物品价值来,直接看容量够不够,能不能装进背包即可 背包能装最大容量

    43730

    【算法】DP背包问题(CC++)

    遍历物品时,我们定义dp[i][j]为在前i件物品中背包容量为j所选择最大化,当i不断增大,前面的状态必然被遍历过,且已经被求出来,这样后面我们便可以减少遍历次数,拿过来直接用即可。...0-1背包问题 问题描述:给定一组物品,每个物品都有一个重量和一个价值,现有一个背包可以承载最大重量为W。可以选择哪些物品,使得不超过背包容量前提下,所携带物品总价值最大。...可以选择哪些物品,使得不超过背包容量前提下,所携带物品总价值最大。但每种物品可以无限取用。...遍历顺序:先遍历背包容量,再遍历物品。 多重背包问题 还有一种叫做多重背包问题,多重背包题中,每种物品都有限定数量,不再是仅有一个,而是有多个。...不同种类货币,面值可能是相同。 现在,要你用这 V 种货币凑出 N 元钱,请问共有多少种不同凑法。 输入格式 第一行包含两个整数 V 和 N。

    10110

    python实现贪婪算法解决01背包问题

    一、背包问题 01背包M件物品取出若干件放在空间为W背包里,每件物品体积为W1,W2至Wn,与之相对应价值为P1,P2至Pn。01背包背包题中最简单问题。...01背包约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性。01背包题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。...如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入物品占据了多大空间,需要枚举将这个物品放入背包后可能占据背包空间所有情况。...显而易见,放入铁球进去是最优选择。但是原因是什么呢?很简单,就是因为铁球密度较大,相同体积铁球和棉花相比,铁球更重。   ...现在再次回到背包问题上,要使得背包中可以获得最大总价值物品,参照铁球例子我们可以知道选择单位重量下价值最高物品放入为最优选择

    2K20

    【动态规划背包问题】从数学角度推导「完全背包」与「01 背包」之间遍历顺序关系

    前言 今天是我们讲解「动态规划专题」中背包问题」第四天。 众多背包题中「01 背包问题」是最为核心,因此我建议你先精读过 背包问题 第一讲 之后再阅读本文。...其实就是 0-1 背包问题基础上,增加了每件物品可以选择多次特点(容量允许情况下)。...由于每件物品可以被选择多次,因此对于某个 而言,其值应该为以下所有可能方案中最大值: 选择 0 件物品 最大价值,即 选择 1 件物品 最大价值,即 选择 2 件物品...如果你不太理解上面的话,或许是因为你「还没学习」或者「有点忘记」01 背包问题,三叶强烈建议你先对 01 背包问题 进行学习/回顾。 而「完全背包」区别于「01 背包」,在于每件物品可以被选择多次。...因此你可能会在别的地方看到这样讲解: 「01 背包将容量维度「从大到小」遍历代表每件物品只能选择一件,而完全背包将容量维度「从小到大」遍历代表每件物品可以选择多次。」

    87341

    【动态规划背包问题】多重背包の单调队列优化

    第一种优化方式:多重背包の二进制优化。 另外,我文章结尾处列举了我所整理关于背包问题相关题目。 背包问题我会按照编排好顺序进行讲解(每隔几天更新一篇,确保大家消化)。...题目描述 有 种物品和一个容量为 背包,每种物品「数量有限」。 第 件物品体积是 ,价值是 ,数量为 。 选择哪些物品,每件物品选择多少件,可使得总价值最大。...其实就是 0-1 背包问题基础上,增加了每件物品可以选择「有限次数」特点(容量允许情况下)。...但事实上,转移只会发生在「对当前物品体积取余相同状态之间。 举个 ?,假设当前我们处理到物品体积和价值均为 ,数量为 ,而我们背包容量为 。...与对「物品」做拆分「二进制优化」不同,「单调队列优化」是对「状态」做拆分操作。 利用某个状态必然是由余数相同特定状态值转移而来进行优化。 单调队列优化是三种传统背包题中最难部分。

    70341

    洛谷-----P1025 数划分

    其实就是给你一个可选数组,数组里面元素按降序大小从1----n排列,要求你从里面选择k个数字,每一个数字可以重复选择,要求这k个数字和等于n,存在几种方式?...其实就是下面这道题翻版法: leetcode 39....零钱兑换----完全背包套路解法详细再探 1.dp数组含义 本题可以转化为从1-----i个物品中任意选择num个物品,每个物品数量无限,可选多次,求刚好装满背包方案数量,背包大小为i 那么得到dp...[i][j][num]数组含义:考虑前i件物品,凑成总和j并且选择物品件数为num方案总数 2.推导状态转移方程 注意这里物品编号i就是物品大小 如果不选择当前物品放入背包,那么dp[i][j][...num]=dp[i-1][j][num] 如果选择当前物品放入背包,那么还需要对当前物品多次选取,累计所有可行方案数量,即 //对每个物品考虑选择多次---当前选择物品i总容量不能大于当前背包容量

    36010

    贪心算法(二)——一般背包问题

    题目 有一个背包,最多放M kg物体(物体大小不限); 有n个物体,每个物体重量为Wi,每个物体完全放入背包后可获得收益Pi。:如何放置能获得最大收益?...下面讨论就是一般背包问题。 结果集 一般背包题中,结果集可以用一个n元组表示: 1. x下标i表示物体序号; 2. xi表示第i个物体加入背包部分(0<=xi<=1) ?...目标函数 使用贪心法解决最优化问题第一步,就是要从题目中抽象出目标函数,这是一个数学建模过程。 本题中,目标函数就是当前背包收益最大值: ?...最后选择最优量度标准。 最优量度标准选择有多种方式,并不是所有的最优量度标准都能导致整体最优解。最优量度标准选择往往是先根据经验,然后再通过数学归纳法方式证明它能导致整体最优解。...); 如果没有sort函数中指定具体排序规则,则容器会使用容器中存储对象内部compareTo函数进行排序。

    2.1K70

    算法-动态规划

    最优子结构:一个问题具有最优子结构意味着问题最优解可以由子问题最优解组合而成。例如,求解最短路径问题中,从起点到终点最短路径可以由从起点到中间点最短路径和从中间点到终点最短路径组成。...子问题重叠:子问题重叠是指在求解问题过程中,会多次重复地求解相同子问题。动态规划通过保存子问题解,避免了重复计算这些子问题,从而提高了算法效率。...解题步骤 确定问题状态:状态是描述问题在不同阶段特征。选择合适状态表示是动态规划关键。例如,背包题中,可以用背包剩余容量和已选物品集合来表示状态。...例如,背包题中,状态转移方程可以表示为:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]),其中dp[i][j]表示前i个物品放入容量为...例如,背包题中,初始状态可以是dp[0][j] = 0(没有物品时,背包价值为 0),边界条件可以是dp[i][0] = 0(背包容量为 0 时,背包价值为 0)。

    11810

    你必须知道基础算法

    如果某两个相同棋子,可以通过一条线连起来(这条线不能经过其它棋子),而且线转折次数不超过两次,那么这两个棋子就可以棋盘上消去。...背包问题与0-1背包问题不同点在于,选择物品装入背包时,可以只选择物品一部分,而不一定要选择物品全部。...简单题意:给定n和物品和一人背包,物品i重量是wi,其价值为vi,如何选择装入背包物品,使得装入背包物品总价值最大?...优化:01背包题中,需要决策是是否选取第i种物品,同样,完全背包问题也可以这样决策。...个对象划分为不相交集合,每个集合中,选择其中某个元素代表所在集合。

    74410

    动态规划之背包问题——01背包

    背包递推公式 3. 遍历顺序 背包题中我们常见就是 01背包和 完全背包leetcode题库中主要就是这两种类型题目。...(其实就是当物品i重量大于背包j重量时,物品i无法放进背包中,所以被背包价值依然和前面相同。)...(也就是容量为j背包,放入物品i了之后价值即:dp[j]) dp[j]有两个选择,一个是取自己dp[j] 相当于二维dp数组中dp[i-1][j],即不放物品i,一个是取dp[j - weight...一维dp遍历时候,背包是从大到小:倒叙遍历是为了保证物品i只被放入一次! 一旦正序遍历,那么物品0就会被重复加入多次。...那么只要找到集合里能够出现 sum / 2 子集总和,就算是可以分割成两个相同元素和子集了。 本题中我们要使用是01背包,因为元素我们只能用一次。

    71920

    背包九讲学习笔记

    初始化细节问题 图片 小结 01 背包问题是最基本背包问题,它包含了背包题中设计状态、方程最基本思想。另外,别的类型背包问题往往也可以转换成 01 背包问题求解。...背包问题变换 以上涉及各种背包问题都是要求背包容量(费用)限制下求可以取到最大价值,但背包问题还有很多种灵活法,在这里值得提一下。...但是我认为,只要深入理解了求背包问题最大价值方法,即使法变化了,也是不难想出算法。 例如,求解最多可以放多少件物品或者最多可以装满多少背包空间。...下面说一些变化更大法。...首先看 01 背包求最优解状态转移方程: 图片 图片 小结 显然,这里不可能穷尽背包类动态规划问题所有的法。

    42410

    【动态规划】一次搞定三种背包问题

    不同地方在于物品数量限制,01背包题中,每种物品只有一个,对于每种物品而言,便只有选和不选两个选择。完全背包题中,每种物品有无限多个,所以可选范围要大很多。...多重背包题中,每种物品都有各自数量限制。 三种背包问题虽然对于物品数量限制不一样,但都可以转化为01背包问题来进行思考。...完全背包题中,虽然每种物品都可以选择无限个,但由于背包容量有限,实际上每种物品可以选择数量也是有限,那么将每种物品都看做是 V/Ci 种只有一件不同物品,不就成了01背包问题吗?...所以对于混合背包问题,同样也可以一个一个物品考虑,如果这个物品是最多选一个,那么就采用01背包解决策略,如果是可以选择任意多个,那么就使用完全背包解决策略,如果只能选择有限多个,那么就使用多重背包解决策略...虽然条件各不相同,但是解题思路却很相似,相信经过这一篇文章总结,你对于背包问题也会有更好理解,并且领会到这种抽象问题好处。

    1.4K20

    浅谈完全背包问题

    完全背包问题呢,见名知意,就是所谓物品无限多,选也选不完那种,是多重背包promax版本。完全背包问题是背包问题一种变体,与0/1背包问题有所不同。...完全背包题中,每种物品数量是无限,可以选择任意数量某一种物品放入背包中。问题描述如下: 给定一个背包容量为m,有n种物品,每种物品有重量v[i]和价值w[i],且数量无限。...目标是选择物品放入背包,使得它们总重量不超过背包容量,并且总价值最大。 与0/1背包问题相比,完全背包问题状态转移方程有所不同,因为每种物品可以选择多次。...解决完全背包问题方法与0/1背包问题类似,可以使用动态规划、贪心算法等。常见动态规划方法包括自底向上迭代和自顶向下递归+记忆化搜索。...(dp[j],dp[j-v[i]]+w[i]);//状态转移方程 } } cout<<dp[m]<<endl; return 0; } 下面解释一下为啥要正序,因为不是正序的话从小到大更新,更新大时候状态可以从小状态转移过来

    7410

    算法修炼之筑基篇——筑基一层中期(解决01背包,完全背包,多重背包

    这三种问题分别是: 01背包问题:每种物品只能选择一次,求最大价值。 完全背包问题:每种物品可以选择无限次,求最大价值。 多重背包问题:每种物品有一个选择上限,求最大价值。...注意这里和01背包问题区别,因为可以放多次,所以是f[i][j-v[i]]而不是f[i-1][j-v[i]]。...如何选择放入背包物品,使得背包内物品总价值最大,且不超过背包容量。 这个问题看起来很复杂,但其实我们可以用一些技巧来简化它。...首先,我们可以把每种物品看成是若干个01背包题中物品,即把第i种物品分成num[i]个单独物品,每个物品重量和价值都是w[i]和v[i]。这样我们就把多重背包问题转化成了一个01背包问题。...]+v[i]); } } cout<<dp[m]; return 0; } 下面是需要记忆知识点(01背包题中推到公式需要记忆) 二维dp数组 for(i=1;i<=n;i+

    11010

    畅谈分组背包问题

    不同在了就是状态转移上了,多重背包呢可以选多个所以用k来控制,分组背包呢,例题中一组背包中最多只允许选一个,就是对于一组背包可以不选可以选一个。...每一个物品都是不同、有个性,没有完全相同,第三个for循环就是枚举每一组具体物品。...分组背包呢,第i组物品体积价值都是各不相同,毫无规律可言,何以优化,但是空间复杂度上可以优化成一维,f[i][j]是f[i-1][j]转移过来,就是在前一组物品决策完转移过来,只是用了上一行数据...有的题呢,一组物品给你限定了选多少个,比如选2个3个,例题中最多选一个,这样的话就比较麻烦了,既要确定选了哪一组物品又要达到选几个要求,还是再次基础上,利用贪心,每一组背包选几个要求基础上,使得每一组背包都是最优就可以...用背包容量去枚举每一组背包,再去加一个if判断是否达到选几个要求。有的呢还会物品会乱序输入,让你自己去分组好,再去进行选择。下面放一个我写过代码,组数打乱自己找(当然题中样例每打乱)。

    3810

    DP:完全背包问题

    问题定义 ️完全背包问题 完全背包题中,每种物品有无限个可用,目标是限定背包容量内,选择物品使得总价值最大。 ️数学描述 给定n种物品,每种物品有重量weight[i]和价值value[i]。...背包容量为C,求解不超过容量C情况下,可以获得最大价值。 3. 动态规划思想 ️DP思想概述 动态规划通过将问题分解为子问题,利用子问题解来构建最终解。...+dp[i-1][j-xv[i]]+(x-1)w[i]) 讨论下面式子中最后一个x是否和上面的k相同,首先我们要知道,给定一个背包容量,选择一个位置极限是相同,我们不能选择一个位置选择无穷多个...,所以这里 j-kv[i] 极限和 j-xv[i] 极限是相同,所以这里x和k应该相同,由于这两个相同,所以我们可以将第二个式子左右两边同时加上一个 w[i] 可以得出: dp[i][j-v[...关键在于,理解并掌握动态规划核心思想,能够帮助我们从容应对各种复杂优化问题。希望通过本文介绍,大家对完全背包问题有了更清晰理解,并能将其应用到实际问题中去。

    13510

    动态规划之三维01背包问题

    动态规划问题是学习算法时一个尤为重要内容,讲解什么是动态规划之前,首先来讲一下分而治之。 分而治之就是一个大问题可以被分解成许多个小问题,逐个解决最后合并即可。...但是我们使用归并排序时,每个子问题都是只被计算一次,但是如果每个子问题不相互独立,需要被重复计算好多次,分而治之就不再是明智选择了,完全可以把子问题结果放在一个表中,需要就直接去查即可,这种存放子问题结果方式就是所谓动态规划...动态规划可以解决各种问题,比如矩阵连乘(最小连乘次数),最长公共子序列,01背包…… 今天我们用动态规划解决三维01背包问题,解决三维01背包之前,简单讲一下01背包问题:有一个背包,最大载重W,有...i, j]表示在前i件物品中选择若干件放在所剩空间为j背包里所能获得最大价值 f[i, j] = max{f[i-1, j-w[i]]+v[i](j >= Wi), f[i-1, j]} 这样,我们可以自底向上地得出在前...在这个问题中,仅仅只有一个限制条件,也就是最大载重,可是有些时候背包并不只是载重受限,体积也会受限,当01背包问题有两个限制条件:载重和体积,这样01背包问题就变成了三维01背包问题。

    3.2K10
    领券