首页
学习
活动
专区
圈层
工具
发布

超硬核的 Python 数据可视化教程!

刻度,标签和图例 plt的xlim、xticks和xtickslabels方法分别控制图表的范围和刻度位置和刻度标签。 调用方法时不带参数,则返回当前的参数值;调用时带参数,则设置参数值。.../plot.jpg') #保存图像为plot名称的jpg格式图像 x288 with 0 Axes> 3 Pandas中的绘图函数 Matplotlib作图 matplotlib...组装一张图表需要单独调用各个基础组件才行。Pandas中有许多基于matplotlib的高级绘图方法,原本需要多行代码才能搞定的图表,使用pandas只需要短短几行。...我们使用的就调用了pandas中的绘图包。 import matplotlib.pyplot as plt 线型图 Series和DataFrame都有一个用于生成各类图表的plot方法。...:在Y轴上使用对数标尺 DataFrame.plot方法的参数 DataFrame除了Series中的参数外,还有一些独有的选项。

5.5K52

【学习】Python可视化工具概述-外文编译

在学习过程中,碰到的最大的挑战,就是格式化x轴和y轴,使用大的标签使数据看起来合理。同样还需要时间弄清楚每个工具需要格式化的数据。一旦搞清楚这些,其它的就相对简单了。...想想,还可以在y轴上做更多的格式化处理,但这样,就需要了解matplotlib了。好了,就这样,仅通过pandas,我们不能做更多的定制了。...设置x轴上各项的顺序。...下面的代码设置顺序,并设置图表样式和条形图颜色: sns.set_style("darkgrid") bar_plot = sns.barplot(x=budget["detail"],y=budget...再想想,我还想格式化一下,在y轴上的点,在不使用matplotlib的plt.yticks的情况下,但我不知道如何做。

2.4K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python环境】Python可视化工具综述

    在这个过程中,我遇到的最大挑战是格式化x轴和y轴,以及通过赋予一些大的标签使数据看起来合理。找出每种工具需要的数据格式也花费了一些时间。一旦决定了这些部分,其余都相对比较简单。...理想情况下,我希望对y轴做一些更多的格式化,但是这需要跳进matplotlib进行设置。这是一个完全可用的可视化,但不可能纯粹通过pandas做大量更多的定制。...如你所看到的,我不得不使用matplotlin旋转x轴标签从而实际阅读它们。直观上显示效果不错。...理想情况下,我想格式化y轴上的刻度,但是除了使用matplotlib中的plt.yticks,我没有其他的办法。...如你所见,图表很漂亮,也很干净。我没有找到设置y轴格式的简单方法。Bokeh有更多的功能,但在此示例中不做深入探讨。 Pygal Pygal用于创建svg图表。

    2.6K100

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?...Matplotlib、Seaborn 和 Pandas 把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas...我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Plotly Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。

    2.7K30

    8个流行的Python可视化工具包,你喜欢哪个?

    下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中。快来试试你喜欢哪个? 用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?...01-03 Matplotlib、Seaborn 和 Pandas 把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn...我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...06 Plotly Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。

    3.1K40

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?...Matplotlib、Seaborn 和 Pandas 把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas...我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...Plotly Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。

    2.7K30

    8个好看又实用 Python可视化工具包,再也不怕做不出图表了!

    用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?...00.Matplotlib、Seaborn 和 Pandas 把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或...我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...03.Plotly Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。

    5.4K00

    8个流行的Python可视化工具包

    下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中。快来试试你喜欢哪个? 用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?...Matplotlib、Seaborn 和 Pandas 把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas...这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。

    1.2K20

    【Python篇】matplotlib超详细教程-由入门到精通(上篇)

    坐标轴 (Axes):图表中的数据区域,它可以包含多条曲线或数据点。 曲线 (Line):用来展示数据的线段。 刻度 (Ticks):坐标轴上显示的数据标记。...# 示例:为图表添加标题和坐标轴标签 plt.plot(x, y) # 添加标题 plt.title("简单的折线图") # 添加坐标轴标签 plt.xlabel("X轴") plt.ylabel(...# 创建折线图,设置线条颜色、线型和宽度 plt.plot(x, y, color='red', linestyle='--', linewidth=2) # 显示图表 plt.show() 2.2...# 绘制图表 plt.plot(x, y) # 设置坐标轴的范围 plt.xlim(0, 6) # X 轴的范围 plt.ylim(0, 30) # Y 轴的范围 # 设置 X 轴和 Y 轴的刻度...y2 = [2, 3, 5, 7, 11] # 创建图表,设置线条颜色、样式和标记 plt.plot(x, y1, color='red', linestyle='-', marker='o', label

    4.9K13

    教程 | 如何优雅而高效地使用Matplotlib实现数据可视化

    开始 下面主要介绍如何在 pandas 中创建基础的可视化以及使用 Matplotlib 定制最常用的项。了解基础流程有助于更直观地进行自定义。...这就是我推荐你养成以下习惯的原因: fig, ax = plt.subplots() top_10.plot(kind='barh', y="Sales", x="Name", ax=ax) 生成的图表和原始图表基本一样...假设我们想调整一些轴标签,且 ax 变量中有多个轴,可以进行一些操作: fig, ax = plt.subplots() top_10.plot(kind='barh', y="Sales", x="Name...图表 目前,我们所做的所有改变都是针对单个图表。我们还能够在图像上添加多个表,使用不同的选项保存整个图像。 如果我们确定要在同一个图像上放置两个表,那么我们应该对如何做有一个基础了解。...首先,创建图像,然后创建轴,再将它们绘制成图表。

    3.1K50

    教程 | 如何优雅而高效地使用Matplotlib实现数据可视化

    开始 下面主要介绍如何在 pandas 中创建基础的可视化以及使用 Matplotlib 定制最常用的项。了解基础流程有助于更直观地进行自定义。...这就是我推荐你养成以下习惯的原因: fig, ax = plt.subplots() top_10.plot(kind='barh', y="Sales", x="Name", ax=ax) 生成的图表和原始图表基本一样...假设我们想调整一些轴标签,且 ax 变量中有多个轴,可以进行一些操作: fig, ax = plt.subplots() top_10.plot(kind='barh', y="Sales", x="Name...图表 目前,我们所做的所有改变都是针对单个图表。我们还能够在图像上添加多个表,使用不同的选项保存整个图像。 如果我们确定要在同一个图像上放置两个表,那么我们应该对如何做有一个基础了解。...首先,创建图像,然后创建轴,再将它们绘制成图表。

    3K20

    纯干货:手把手教你用Python做数据可视化(附代码)

    例如,要用绿色破折号绘制x对y的线,你需要执行: ax.plot(x, y, 'g--') 这种在字符串中指定颜色和线条样式的方式是方便的; 在实践中,如果你以编程方式创建绘图,则可能不希望将字符串混合在一起以创建具有所需样式的图表...传入参数的情况下调用,并设置参数值(例如plt.xlim([0, 10])会将x轴的范围设置为0到10)。 所有的这些方法都会在当前活动的或最近创建的AxeSubplot上生效。...▲图8 表述x轴(以及轴标签)的简单图表 要改变x轴刻度,最简单的方式是使用set_xticks和set_xticklebels。...▲图9 x轴刻度的简单示例 修改y轴坐标是相同过程,将上面示例中的x替换成y即可。轴的类型拥有一个set方法,允许批量设置绘图属性。...text在图表上给定的坐标(x, y),根据可选的定制样式绘制文本: ax.text(x, y, 'Hello world!'

    5.6K22

    【愚公系列】《Python网络爬虫从入门到精通》041-Matplotlib 图表的常用设置

    Matplotlib作为Python中最流行的绘图库之一,提供了丰富的功能和灵活的设置选项,使得我们能够创建出专业且具有视觉冲击力的图表。...然而,初学者常常会在图表设置上感到困惑,不知道如何调整图表的样式、颜色、标签及其他参数,以达到最佳的可视化效果。...在本篇文章《Matplotlib 图表的常用设置》中,我们将系统地介绍Matplotlib中常用的图表设置技巧。我们将涵盖图表的基本构建块,包括标题、坐标轴、图例、刻度以及颜色等方面的设置。...一、Matplotlib 图表的常用设置1.基本绘图函数 plot()语法matplotlib.pyplot.plot(x, y, format_string, **kwargs)参数说明参数说明xx轴数据...画布与子图的关系:使用 plt.figure() 创建独立画布后,默认在当前画布上绘制图形。若需多子图布局,可结合 plt.subplots() 使用。

    20410

    一文掌握Pandas可视化图表

    今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1....图表元素设置 图表元素设置主要是指 数据源选择、图大小、标题、坐标轴文字、图例、网格线、图颜色、字体大小、线条样式、色系、多子图、图形叠加与绘图引擎等等。...数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...(df))) df.head() 选择X列为x轴,B、C列为y轴数据 # 指定多个Y df.plot(x='X',y=['B','C']) 图大小 通过参数figsize传入一个元组,指定图的长宽...那么可以通过参数rot设置文字的角度 # x轴标签旋转角度 df.plot.bar(rot=0) 网格线 默认情况下图表是不显示网格线的,我们可以通过参数grid来设置其显隐 # 网格线 df.plot.bar

    9.2K50

    高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表。本文主要推荐一个学习使用Matplotlib的步骤。...看着最别扭的地方是总收入数字的格式。Matplotlib可以通过FuncFormatter来帮我们实现。这个功能可以将用户定义的函数应用于值,并返回一个格式整齐的字符串放置在坐标轴上。...现在我们有一个格式化函数,需要定义它并将其应用到x轴。...虽然这可能不是让人感到兴奋(眼前一亮)的绘图方式,但它展示了你在用这种方法时有多大权限。 图形和图像 到目前为止,我们所做的所有改变都是单个图形。...幸运的是,我们也有能力在图上添加多个图形,并使用各种选项保存整个图像。 如果决定要把两幅图放在同一个图像上,我们应对如何做到这一点有基本了解。首先,创建图形,然后创建坐标轴,然后将其全部绘制在一起。

    2.9K20

    高效使用 Python 可视化工具 Matplotlib

    本文来自"Python开发者" Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表。...入门 本文的其余部分将作为一个入门教程,介绍如何在pandas中进行基本的可视化创建,并使用matplotlib自定义最常用的项目。一旦你了解了基本过程,进一步的定制化创建就相对比较简单。...看着最别扭的地方是总收入数字的格式。 Matplotlib可以通过FuncFormatter来帮我们实现。这个功能可以将用户定义的函数应用于值,并返回一个格式整齐的字符串放置在坐标轴上。...虽然这可能不是让人感到兴奋(眼前一亮)的绘图方式,但它展示了你在用这种方法时有多大权限。 图形和图像 到目前为止,我们所做的所有改变都是单个图形。...幸运的是,我们也有能力在图上添加多个图形,并使用各种选项保存整个图像。 如果决定要把两幅图放在同一个图像上,我们应对如何做到这一点有基本了解。 首先,创建图形,然后创建坐标轴,然后将其全部绘制在一起。

    2.9K20

    『数据可视化』一文掌握Pandas可视化图表

    今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1....图表元素设置 图表元素设置主要是指 数据源选择、图大小、标题、坐标轴文字、图例、网格线、图颜色、字体大小、线条样式、色系、多子图、图形叠加与绘图引擎等等。...数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...那么可以通过参数rot设置文字的角度 # x轴标签旋转角度 df.plot.bar(rot=0) ?...常见图表类型 在介绍完图表元素设置后,我们演示一下常见的几种图表类型。 柱状图 柱状图主要用于数据的对比,通过柱形的高低来表达数据的大小。

    9.9K40
    领券