在使用geom_point和geom_pointrange时,可以通过调整因子的顺序来维护因子顺序。以下是一些方法:
x <- factor(x, levels = c("C", "A", "B"))
x <- reorder(x, y)
scale_x_discrete(limits = c("A", "B", "C"))
请注意,以上方法是基于R语言中的ggplot2包进行解释的。对于其他编程语言或工具,可能会有不同的方法来维护因子顺序。
关于这个误差bar的添加,主要的问题其实是计算的问题,需要max和min,如果存在分组的问题,那么就需要使用按照分组再计算max和min,然后再在aes中使用。 love&peace
本教程介绍如何使用R软件和ggplot2包创建带有误差棒的图形。 可以使用以下函数创建不同类型的错误栏:
ggplot2是一个神奇的R包,可以将自己的统计数据绘制成想要的图案。从今天起小编计划为各位观众老爷们带来一个ggplot2的系列教程。那么首先呢,大家在可视化自己的科研数据时,最最最常用的就是绘制一个带误差或者显著值的柱状图。
因为之前自己已经学习过R语言基础的一些内容,包括:数据类型与数据结构、函数与R包、R语言作图基础等,今天的学习内容主要是《R数据科学》这本书的第一章——使用ggplot2进行数据可视化。
这里使用ToothGrowth 数据集。它描述了维他命C对Guinea猪牙齿的生长影响。包含了三种不同的剂量(Vitamin C (0.5, 1, and 2 mg))和相应的两种不同使用方法( [orange juice (OJ) or ascorbic acid (VC)])。
ggplot2是由Hadley Wickham创建的一个十分强大的可视化R包。按照ggplot2的绘图理念,Plot(图)= data(数据集)+ Aesthetics(美学映射)+ Geometry(几何对象)。本文将从ggplot2的八大基本要素逐步介绍这个强大的R可视化包。
可视化的展示方式可以使数据更易读,且容易看出一些数据下隐藏的“结果”,而添加注释则可以进一步聚焦到想重点展示的“信息”。
https://r4ds.hadley.nz/data-visualize#visualizing-relationships
ggplot2是《The Grammar of Graphics》/《图形的语法》中提出了一套图形语法,将图形元素抽象成可以自由组合的要素,类似Photoshop中的图层累加,ggplot2将指定的元素/映射关系逐层叠加,最终形成所图形。更加深入学习ggplot2,请参考《ggplot2: 数据分析与图形艺术》。
感觉ggplot 绘图中的图例/legend,完全可以作为一个单独的内容讲很久,特此来总结一下。
R有几种不同的系统用来产生图形,但ggplot2是最优雅而多变的那一种。ggplot2实现了图形语法,一种描述和构建图形的逻辑系统。通过ggplo2,我们能够快速学习,多处应用。
漂亮的圆形图。我不确定对数据分析师本身是否有额外的好处,但如果能吸引决策者的注意,那对我来说就是额外的价值。
small <- diamonds[sample(nrow(diamonds), 1000), ]
考虑到公众号后台数不胜数的提问其实并不是生物学知识或者数据处理知识的困惑,仅仅是绘图小技巧以及数据转换的困难。所以我们一再强调系统性掌握编程知识的重要性,在这个打基础方面我让实习生“身先士卒”,起码每个人在每个编程语言上面都需要看至少五本书而且每本书都需要看五遍以上,并且详细的记录笔记。
今天跟大家分享ggplot图表的配色原理与基本技巧。 图表配色是一个很深奥的话题,多亏了R语言平台的众多开发者贡献的配色包,让图表的配色不再深不可测。 这里我暂且将所有的配色场景划分为两类: 离散变量配色与连续变量配色 ggplot函数的配色机制相对来说比较智能,当你给colour或者fill属性指定给变量映射的时候,该函数就会自动的区分变量属性(是离散变量或者是连续变量),进而给出适用于两种情况的配色风格。 ggplot(diamonds,aes(carat,price,colour=cut))+geom
geom_label可以使用fill对颜色进行填充,fontface设置字体,geom_text不能填充颜色
首先,可以看出这张图是张点图,而x轴、y轴和点的颜色分别对应数据中的tSNE_1、tSNE_2和cluster,所以用映射来实现。
调整每个映射Legend 内部的顺序,如 cut 中 Fair,Good等的顺序,需要设置因子的水平,具体见:R语言学习 - 热图美化 (数值标准化和调整坐标轴顺序)
前面介绍了一些ggplot绘图,ggplot2|从0开始绘制直方图,ggplot2|从0开始绘制箱线图,ggplot2|从0开始绘制折线图,这次介绍一下当数据为发散性正负值的时候,几种比较合适的展示方式。
在本课中需要制作与每个样本中的平均表达量相关的多个图,还需要使用所有可用的metadata来适当地注释图表。
aes()函数是ggplot2包中一个重要的函数,它用于将变量映射到图形属性上,如颜色、形状、大小、位置等。它的主要功能包括以下三个方面:
group1 = rep(gl(2, 5, labels = c("a", "b")), 2),
可以使用函数geom_line()、geom_step()或geom_path()。
几何对象的本质,也就是画面上的不同图层。当我们通过 ggplot(data=example) 后,便相当于设定了默认的ggplot2 设定的背景图层,接着依靠 +geom_point() , +geom_bar() 等等,便可以实现图层的添加。
❝本节来进行论文图表的复现;通过ggplot2绘制误差线点图 加载R包 library(tidyverse) library(ggprism) library(ggsci) 数据清洗 df <- read_tsv("F1-b.txt") %>% pivot_longer(-c(type,time)) %>% select(-name) %>% group_by(type,time) %>% summarise(value_mean=mean(value),sd=sd(value),
上节学习了ggplot2的基础作图,并掌握了基本的作图模板。但是每次作图只有两个变量映射到了图形中,如下图:
本次演示我们以R自带的数据集diamonds为例进行绘图,由于数据量比较大我们使用tidyverse随机抽取1000条数据进行演示。
在徐凌老师的 Nat Com 文章 Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics 中有这么一张补充图,介绍了本研究中涉及到的处理和取样的时间线。
继续“一图胜千言”系列,箱线图通过绘制观测数据的五数总括,即最小值、下四分位数、中位数、上四分位数以及最大值,描述了变量值的分布情况。箱线图能够显示出离群点(outlier),通过箱线图能够很容易识别出数据中的异常值。
今天继续 跟着Nature Communications学画图系列第四篇。学习R语言ggplot2包画散点图,然后分组添加拟合曲线。对应的是论文中的Figure2
excel作为一个强大的统计工具,自身包含着一部分数据可视化的功能。R作为可视化的大势,自然也可以画出这些图,有一篇就通过ggplot2包进行了部分总结,甚是有趣,小编复刻学习了一番,现对代码做简单注释,以作分享。
ggplot2 包提供了一套基于图层语法的绘图系统,它弥补了 R 基础绘图系统里的函数缺乏一致性的缺点,将 R 的绘图功能提升到了一个全新的境界。ggplot2 中各种数据可视化的基本原则完全一致,它将数学空间映射到图形元素空间。想象有一张空白的画布,在画布上我们需要定义可视化的数据(data),以及数据变量到图形属性的映射(mapping)。
ggplot2可以用来创建优雅的图形,由于它的灵活,简洁和一致的接口,可以提供美丽、可直接用来发表的图形,吸引了许多用户,特别是科研领域的用户。ggplot2使用grid包来提供一系列的高水平的函数,并将其延伸为图形语法,即独立指定绘图组件,并将它们组合起来,以构建我们想要的任何图形显示。图形语法包含6个主要成分:data, transformations, element, scales, guide和 coordinate system。图层图形语法源于多层数据构建图形的想法。它定义了下表中的图形组分:data, aesthetic mappings, statistical transformations, geometric objects, position adjustment, scales, coordinate system 和 faceting(数据、几何映射、统计变换、几何对象、位置调整、比例、坐标和面)。数据、几何映射、统计变换、几何对象、位置调整形成一个图层,一个图可以有多个图层。
在可靠性实验中,不同产品的测试失效时间可以通过克利夫兰点图进行可视化,今天就对该系列的图进行系统的介绍。主要参考张杰博士的《R语言数据可视化之美》[1],并结合我实际使用经验进行修改。
话说“一图胜千言”,在各类数据分析报告中经常会看见各种各样的图形,例如折线图、条形图、箱线图、点图等。
6月份一直在忙期末考试,今天来迅速的学习下ggplot2包的简单绘图。 R的基础包里面也有很多画图函数,例如plot();barplot();qqplot(); 但是还有大名鼎鼎的ggplot2包,用这个包的函数画出的图比较漂亮,而且使用灵活。
ggplot2是R中用于绘图的高级程序包,它将绘图视为一种映射—数学空问到图形元索空间的映射,例如将不同的数值映射为不同的颜色或其他图形属性。ggplot2在画图时就是采用了类似photoshop的图层设计方式,允许用户一步步构建图形,并且便于图层的修改。
今天跟大家讲关于路径图、平滑曲线与折线图及其美化。 这里涉及到三个设计线条的特殊图层函数: geom_smooth()、geom_path()、geom_line() 下面分别讲解: 关于geom_
ggplot2是R语言中四大著名绘图框架之一,且因为其极高的参数设置自由度和图像的美学感,即使其绘图速度不是很快,但丝毫不影响其成为R中最受欢迎的绘图框架;ggplot2的作者是现任Rstudio首席科学家的Hadley Wickham,ggplot2基于Leland Wilkinson在Grammar of Graphics(图形的语法)中提出的理论,取首字母缩写再加上plot,于是得名ggplot,末尾的2是因为Hadley写包的一个习惯——对先前的版本不满意便写一个新版本的名称不变仅在末尾加上2,如reshape2等;
今天跟大家分享的是ggplot图表中的一类重要元素——线条。 不要觉得专门为线条写一章推送有点小题大做,其实线条对于图表而言,功不可没,即便是不起眼的网格、轴线、或者线条的粗线、线型、磅数等都将决定着你的图表品质。 R语言中ggplot函数系统中涉及到线条的地方有很多,最常见的场景就是我们做geom_line()(折线图)、geom_path()(路径图),以及图表的绘图区(panel)、图表区、网格系统(grid)中所涉及到的线条。 今天以一个折线图为例,简要说明ggplot函数中关于线条的主要参数及其效
许多数据的可视化形式都是对称的,例如箱型图、散点图、小提琴图等。由于显示信息的空间有限,可以通过将几何图形切成两半并添加其他几何图形来更好地利用空间。
学完R语言的基本操作后,我们还可以继续学习R的几大著名而且使用强大的包,今天讲其中的一个,就是ggplot2,至于这个包的评价和地位,我就不多说了,感兴趣可以百度,它绝对是数据可视化的利器,好了,我们先来开始简单介绍一下这个包. 先说说我们人手工作图的方式,1,先画一个坐标轴,2,然后根据数据在图上画图形3,在基础的图形上加一些注释,或加一些对比.基本上这就是我们作图的方式,那么ggplot2就跟这差不多了,1.先设定坐标轴和数据2,选择要画图形的类型3,添加一些图形,4,丰富一下图形的信息.ggpl
拼图:par里的mfrow, grid.arrange, cowplot, patchwork
geom_point():用于绘制散点图 参数 color:点的颜色 size:点的大小 shape :点的形状
plot函数中,x和y分别表示所绘图形的横坐标和纵坐标;函数中的...为附加的参数。plot函数默认的使用格式如下:
fviz_pca_ind是factoextra里面用来可视化PCA结果的一个参数,具体见PCA主成分分析实战和可视化 | 附R代码和测试数据。
在美学映射那一节中,当我们需要把大于两个变量映射到图形中时,x轴和y轴就已经不够用了,需要通过形状和颜色等可区分的形式来代表新增的变量,但是一味的在一张图中增加多种映射会导致图上的信息密度过高,可读性差,这时分面的作用就体现出来了。
双变量数据可视化可能对于我们比较简单, 但是如果变量是三个或者更多,怎么在一幅图一起显示呢?今天我们就来讨论这个问题,解决方案有两种。
哈喽,我是学习生物信息学的阿榜!非常感谢您能够点击进来查看我的笔记。我致力于通过笔记,将生物信息学知识分享给更多的人。如果有任何纰漏或谬误,欢迎指正。让我们一起加油,一起学习进步鸭? 这份思维导图可以
领取专属 10元无门槛券
手把手带您无忧上云